

 [image: First Edition]

 Asterisk Cookbook

Leif Madsen

Russell Bryant

Editor
Mike Loukides

Copyright © 2011 Leif Madsen and Russell Bryant

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Asterisk
 Cookbook, the image of a Radiata Rosy Feather Star, and related
 trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

This is a book for anyone who uses Asterisk,
 but particularly those who already understand the dialplan syntax.
In this book, we look at common problems we’ve encountered as Asterisk
 administrators and implementers, then show solutions to those problems using
 the Asterisk dialplan. As you go through the recipes and start looking at
 the solutions, you may think, “Oh, that’s a neat idea, but they could have
 also done it this way.” That might happen a lot, because with Asterisk, the
 number of solutions available for a particular problem are astounding. We
 have chosen to focus on using the tools available to us within Asterisk, so
 solutions heavily focus on the use of dialplan, but that doesn’t mean an
 external application through the Asterisk Gateway Interface or Asterisk
 Manager Interface isn’t also possible.
Readers of this book should be familiar with many core concepts of
 Asterisk, which is why we recommend that you already be familiar with the
 content of Asterisk: The
 Definitive Guide, also published by O’Reilly. This book is designed to be a
 complement to it.
We hope you find some interesting solutions in this book that help you
 to be creative in future problem solving.
Organization

The book is organized into these
 chapters:
	Chapter 1, Dialplan Fundamentals
	This chapter shows some examples of
 fundamental dialplan constructs that will be useful over and over
 again.

	Chapter 2, Call Control
	This chapter discusses a number of
 examples of controlling phone calls in Asterisk.

	Chapter 3, Audio Manipulation
	This chapter has examples of ways to
 get involved with the audio of a phone call.

Software

This book is focused on documenting Asterisk
 Version 1.8; however, many of the conventions and information in this book
 are version-agnostic.

Conventions Used in This Book

The following typographical conventions are
 used in this book:
	Italic
	Indicates new terms, URLs, email
 addresses, filenames, file extensions, pathnames, directories, and
 Unix utilities.

	Constant
 width
	Indicates commands, options,
 parameters, and arguments that must be substituted into
 commands.

	Constant width
 bold
	Shows commands or other text that
 should be typed literally by the user. Also used for emphasis in
 code.

	Constant width italic
	Shows text that should be replaced with
 user-supplied values.

	[Keywords
 and other stuff]
	Indicates optional keywords and
 arguments.

	{ choice-1 | choice-2
 }
	Signifies either
 choice-1 or
 choice-2.

Tip
This icon signifies a tip, suggestion, or
 general note.

Warning
This icon indicates a warning or
 caution.

Using Code Examples

This book is here to help you get your job
 done. In general, you may use the code in this book in your programs and
 documentation. You do not need to contact us for permission unless you’re
 reproducing a significant portion of the code. For example, writing a
 program that uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O’Reilly
 books does require permission. Answering a question by citing this book
 and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s
 documentation does require permission.
We appreciate, but do not require,
 attribution. An attribution usually includes the title, author, publisher,
 and ISBN. For example: “Asterisk Cookbook, First
 Edition, by Leif Madsen and Russell Bryant (O’Reilly). Copyright 2011 Leif
 Madsen and Russell Bryant, 978-1-449-30382-2.”
If you feel your use of code examples falls
 outside fair use or the permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions
 concerning this book to the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we
 list errata, examples, and any additional information. You can access this
 page at:
	http://oreilly.com/catalog/9781449303822/

To comment or ask technical questions about
 this book, send email to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

While writing this book, we used O’Reilly’s
 Open Feedback Publishing System (OFPS), which allowed Asterisk community
 members to read and comment on the content as we were writing it. The
 following people provided feedback to us via OFPS: Stefan Schmidt, Scott
 Howell, Christian Gutierrez, Jason “not a nub” Parker, and Paul Belanger.
 Thank you all for your valuable contributions to this book!

Chapter 1. Dialplan Fundamentals

Introduction

This chapter is designed to
 show you some fundamental dialplan usage concepts that we use in nearly
 every dialplan. We’ve developed these recipes to show you how we’ve found
 the usage of these dialplan applications to be of the greatest value and
 flexibility.

Counting and Conditionals

Problem

You need to perform basic
 math—such as increasing a counting variable—and do it using a
 conditional statement.

Solution

In many cases you will need
 to perform basic math, such as when incrementing the counter variable
 when performing loops. To increase the counter variable we have a couple
 of methods which are common. First, we can use the standard conditional
 matching format in Asterisk:
[CounterIncrement]
exten => start,1,Verbose(2,Increment the counter variable)

; Set the initial value of the variable
 same => n,Set(CounterVariable=1)
 same => n,Verbose(2,Current value of CounterVariable is: ${CounterVariable})

; Now we can increment the value of CounterVariable
 same => n,Set(CounterVariable=$[${CounterVariable} + 1])
 same => n,Verbose(2,Our new value of CounterVariable is: ${CounterVariable})

 same => n,Hangup()
Alternatively, in versions of Asterisk greater than and including
 Asterisk 1.8, we can use the INC()
 dialplan function:
[CounterIncrement]
exten => start,1,Verbose(2,Increment the counter variable)

; Set the inital value of the variable
 same => n,Set(CounterVariable=1)
 same => n,Verbose(2,Current value of CounterVariable is: ${CounterVariable})

; Now we can increment the value of CounterVariable
 same => n,Set(CounterVariable=${INC(CounterVariable)})
 same => n,Verbose(2,Our new value of CounterVariable is: ${CounterVariable})

 same => n,Hangup()
Additionally, we can use the IF() function to determine whether we should
 be incrementing the value at all:
[CounterIncrement]
exten => start,1,Verbose(2,Increment the counter variable)

; Set the inital value of the variable
 same => n,Set(CounterVariable=1)
 same => n,Verbose(2,Current value of CounterVariable is: ${CounterVariable})

; Here we use the RAND() to randomly help us determine whether we should increment
; the CounterVariable. We've set a range of 0 through 1, which we'll use
; as false (0) or true (1)
 same => n,Set(IncrementValue=${RAND(0,1)})

; Now we can increment the value of CounterVariable if IncrementValue returns 1
 same => n,Set(CounterVariable=${IF($[${IncrementValue} = 1]?
${INC(CounterVariable)}:${CounterVariable})
 same => n,Verbose(2,Our IncrementValue returned: ${IncrementValue})
 same => n,Verbose(2,Our new value of CounterVariable is: ${CounterVariable})

 same => n,Hangup()

Discussion

The incrementing of
 variables in Asterisk is one of the more common functionalities you’ll
 encounter, especially as you start building more complex dialplans where
 you need to iterate over several values. In versions of Asterisk prior
 to 1.8, the most common method for incrementing (and decrementing) the
 value of a counter variable was with the use of the dialplan conditional
 matching format, which we explored in the first example.
With newer versions of
 Asterisk, the incrementing and decrementing of variables can be done
 using the INC() and DEC() dialplan functions respectively. The use
 of the INC() and DEC() functions requires you to specify only
 the name of the variable you want to change, and a value is then
 returned. You do not specify the value to change, which means you would
 provide ${INC(CounterVariable)}, not
 ${INC(${CounterVariable})}. If the
 value of ${CounterVariable} returned
 5, then INC() would try and increment
 the value of the channel variable 5, and not increment the value of 5 to
 the value 6.
Note
Of course, you could pass
 ${MyVariableName} to the INC() function, and if the value of ${MyVariableName} contained the name of the
 variable you actually wanted to retrieve the value of, increment, and
 then return, you could do that.

It should also be explicitly stated that INC() and DEC() do not modify the original value of the
 variable. They simply check to see what the current value of the channel
 variable is (e.g., 5), increment the value in memory, and return the new
 value (e.g., 6).
In our last code block,
 we’ve used the RAND() dialplan
 function to return a random 0 or 1 and assign it to the IncrementVariable channel variable. We then
 use the value stored in ${IncrementVariable} to allow
 the IF() dialplan function to return either an
 incremented value or the original value. The IF() function has the syntax:
${IF($[...conditional
 statement...]?true_return_value:false_return_value)}
The true or false return
 values are optional (although you need to return something in one of
 them). In our case we set our true_return_value to
 ${INC(CounterVariable)}, which would
 return an incremented value that would then be assigned to the
 CounterVariable channel variable. We set the
 false_return_value to ${CounterVariable}, which would return the
 original value of ${CounterVariable}
 to the CounterVariable channel variable, thereby not
 changing the value.
What we’ve described are
 common methods for incrementing (and decrementing) channel variables in
 the dialplan that we’ve found useful.

See Also

Looping in the Dialplan

Looping in the Dialplan

Problem

You need to perform an
 action several times before continuing on in the dialplan.

Solution

A basic loop which iterates
 a certain number of times using a counter can be created in the
 following manner:
[IteratingLoop]
exten => start,1,Verbose(2,Looping through an action five times.)
 same => n,Set(X=1)
 same => n,Verbose(2,Starting the loop)
 same => n,While($[${X} <= 5])
 same => n,Verbose(2,Current value of X is: ${X})
 same => n,Set(X=${INC(X)})
 same => n,EndWhile()
 same => n,Verbose(2,End of the loop)
 same => n,Hangup()
We could build the same
 type of counter-based loop using the GotoIf() application as well:
[IteratingLoop]
exten => start,1,Verbose(2,Looping through an action five times.)
 same => n,Set(X=1)
 same => n,Verbose(2,Starting the loop)
 same => n(top),NoOp()
 same => n,Verbose(2,Current value of X is: ${X})
 same => n,Set(X=${INC(X)})
 same => n,GotoIf($[${X} <= 5]?top)
 same => n,Verbose(2,End of the loop)
 same => n,Hangup()
Sometimes you might have
 multiple values you want to check for. A common way of iterating through
 several values is by saving them to a variable and separating them with
 a hyphen. We can then use the CUT()
 function to select the field that we want to check against:
[LoopWithCut]
exten => start,1,Verbose(2,Example of a loop using the CUT function.)
 same => n,Set(Fruits=Apple-Orange-Banana-Pineapple-Grapes)
 same => n,Set(FruitWeWant=Pineapple)
 same => n,Set(X=1)
 same => n,Set(thisFruit=${CUT(Fruits,-,${X})})
 same => n,While($[${EXISTS(${thisFruit})}])
 same => n,GotoIf($[${thisFruit} = ${FruitWeWant}]?GotIt,1)
 same => n,Set(X=${INC(X)})
 same => n,thisFruit=${CUT(Fruits,-,${X})})
 same => n,EndWhile()

; We got to the end of the loop without finding what we were looking for.
 same => n,Verbose(2,Exiting the loop without finding our fruit.)
 same => n,Hangup()

; If we found the fruit, then the GotoIf() will get us here.
exten => GotIt,1,Verbose(2,We matched the fruit we were looking for.)
 same => n,Hangup()

Discussion

We’ve explored three
 different blocks of code which show common ways of performing loops in
 the Asterisk dialplan. We’ve shown two ways of performing a
 counting-based loop, which lets you iterate through a set of actions a
 specified number of times. The first method uses the While() and EndWhile() applications to specify the bounds
 of the loop, with the check happening at the top of the loop. The second
 method uses the GotoIf() application
 to check whether the loop continues at the bottom of the loop
 block.
The third loop we’ve shown
 uses the CUT() dialplan function to
 move through fields in a list of words that we check for in our loop.
 When we find what we’re looking for, we jump to another location in the
 dialplan (the GotIt extension), where
 we can then continue performing actions knowing we’ve found what we’re
 looking for. If we iterate through the loop enough times, the channel
 variable thisFruit will contain
 nothing, and the loop will then continue at the EndWhile() application, falling through to the
 rest of the priorities below it. If we get there, we know we’ve fallen
 out of our loop without finding what we’re looking for.
There are other variations
 on these loops, such as with the use of the
 ContinueWhile() and ExitWhile()
 applications, and the method with which we search for data can also be
 different, such as with the use of the ARRAY() and HASH() dialplan functions, which are useful
 when returning data from a relational database using
 func_odbc.

See Also

Counting and Conditionals

Controlling Calls Based on Date and Time

Problem

When receiving calls in
 your auto-attendant, you sometimes need to redirect calls to a different
 location of the dialplan based on the date and/or time of day.

Solution

[AutoAttendant]
exten => start,1,Verbose(2,Entering our auto-attedant)
 same => n,Answer()
 same => n,Playback(silence/1)

; We're closed on New Years Eve, New Years Day, Christmas Eve, and Christmas Day
 same => n,GotoIfTime(*,*,31,dec?holiday,1)
 same => n,GotoIfTime(*,*,1,jan?holiday,1)
 same => n,GotoIfTime(*,*,24,dec?holiday,1)
 same => n,GotoIfTime(*,*,25,dec?holiday,1)

; Our operational hours are Monday-Friday, 9:00am to 5:00pm.
 same => n,GotoIfTime(0900-1700,mon-fri,*,*?open,1:closed,1)

exten => open,1,Verbose(2,We're open!)
 same => n,Background(custom/open-greeting)
...

exten => closed,1,Verbose(2,We're closed.)
 same => n,Playback(custom/closed-greeting)
 same => n,Voicemail(general-mailbox@default,u)
 same => n,Hangup()

exten => holiday,1,Verbose(2,We're closed for a holiday.)
 same => n,Playback(custom/closed-holiday)
 same => n,Voicemail(general-mailbox@default,u)
 same => n,Hangup()
We don’t just need to use
 the GotoIfTime() application in an
 auto-attendant. Sometimes we want to forward calls to people based on
 time, such as when IT staff is not in the office on weekends, but are on
 call:
[Devices]
exten => 100,1,Verbose(2,Calling IT Staff.)
 same => n,GotoIfTime(*,sat&sun,*,*?on_call,1)
 same => n,Dial(SIP/itstaff,30)
 same => n,Voicemail(itstaff@default,u)
 same => n,Hangup()

exten => on_call,1,Verbose(2,Calling On-Call IT Staff.)
 same => n,Dial(SIP/myITSP/4165551212&SIP/myITSP/2565551212,30)
 same => n,Voicemail(itstaff@default,u)
 same => n,Hangup()

Discussion

At the top of our
 auto-attendant, we Answer() the call
 and Playback(silence/1) which are
 standard actions prior to playing back prompts to the caller. This
 eliminates the first few milliseconds of a prompt from being cut off.
 After that, we then start our checks with the GotoIfTime() application. We start with
 specific matches first (such as particular days of the week) before we
 do our more general checks, such as our 9:00 a.m. to 5:00 p.m., Monday
 to Friday checks. If we did it the other way around, then we’d be open
 Monday–Friday, 9:00 a.m.–5:00 p.m. on holidays.
The GotoIfTime() application contains five fields
 (one of which is optional; we’ll discuss it momentarily). The fields
 are: time range, days of the week, days of the month, and months. The
 fifth field, which is optional and specified after the months field, is
 the timezone field. If you are servicing multiple timezones, you could
 use this to have different menus and groups of people answering the
 phones between 9:00 a.m. and 5:00 p.m. for each timezone.
On holidays, we have a
 separate part of the menu in which we play back a prompt and then send
 the caller to Voicemail(), but you
 could, of course, send the caller to any functionality that you wish.
 We’ve used the asterisk (*) symbol to
 indicate that at any time of the day and any day of the week, but only
 on the 31st day of December, should calls go to the holiday extension.
 We then specify in the same manner for the 1st of January, the 24th of
 December, and the 25th of December, all of which are handled by the
 holiday extension.
After we’ve determined it’s
 not a holiday, then we perform our standard check to see if we should be
 using the open extension—which we’ll use when the office is open—or the
 closed extension—which plays back a prompt indicating we’re closed and
 to leave a message in the company Voicemail().
In our second block of
 code, we’ve also shown how you could use the GotoIfTime() to call IT staff on the weekends
 (Saturday and Sunday, any time of the day). Normally, people would call
 the extension 100, and if it is Monday to Friday, they would be directed
 to the SIP device registered to [itstaff] in sip.conf. Of course, since the people reading
 and implementing this probably are IT staff, there is a good chance you
 will alter this to call at hours which are more sane.

Authenticating Callers

Problem

You need to authenticate
 callers prior to moving on in the dialplan.

Solution

[Authentication]
exten => start,1,Verbose(2,Simple Authenicate application example)
 same => n,Playback(silence/1)
 same => n,Authenticate(1234)
 same => n,Hangup()
Here is a slightly modified
 version that sets the maxdigits value to 4, thereby
 not requiring the user to press the # key when done
 entering the password:
[Authentication]
exten => start,1,Verbose(2,Simple Authenicate application example)
 same => n,Playback(silence/1)
 same => n,Authenticate(1234,,4)
 same => n,Hangup()
By starting our password
 field with a leading forward slash (/), we can utilize an external file as the
 source of the password(s):
[Authentication]
exten => start,1,Verbose(2,Simple Authenicate application example)
 same => n,Playback(silence/1)
 same => n,Authenticate(/etc/asterisk/authenticate/passwd_list.txt)
 same => n,Hangup()
If we use the d flag, Asterisk will interpret the path
 provided as a database key in the Asterisk DB instead of a file:
[Authentication]
exten => start,1,Verbose(2,Simple Authenicate application example)
 same => n,Playback(silence/1)
 same => n,Authenticate(/authenticate/password,d)
 same => n,Hangup()
We can insert and modify
 the password we’re going to use in the Asterisk database using the
 Asterisk CLI:
*CLI> database put authenticate/password 1234 this_does_not_matter
Updated database successfully

*CLI> database show authenticate
/authenticate/password/1234 : this_does_not_matter
1 result found.
A neat modification for temporary passwords in the Asterisk
 Database (AstDB) is by adding the r
 flag along with the d flag to remove
 the password from the AstDB upon successful authentication:
[Authentication]
exten => start,1,Verbose(2,Simple Authenicate application example)
 same => n,Playback(silence/1)
 same => n,Authenticate(/authenticate/temp_password,dr)
 same => n,Hangup()
After we insert the
 password into the database, we can use it until an authentication
 happens, and then it is removed from the database:
*CLI> database put authenticate/temp_password 1234 this_does_not_matter
Updated database successfully

*CLI> database show authenticate

Discussion

The Authenticate() dialplan application is quite
 basic at its core; a password is provided to the dialplan application,
 and that password must be entered correctly to authenticate and continue
 on in the dialplan. The Authenticate() application is one of the older
 applications in Asterisk, and it shows that by the number of available
 options for something that should be an almost trivial application.
 While much of the functionality provided by the
 Authenticate() application can be done in the
 dialplan using dialplan functions and other applications, it is somewhat
 nice to have much of the functionality contained within the application
 directly.
We’ve provided examples of
 some of this functionality in the Solution section. We started off with
 a simple example of how you can provide a password to Authenticate() and then require that password
 to be entered before continuing on in the dialplan. The first example required the
 user to enter a password of 1234
 followed by the # key to signal that
 entering of digits was complete. Our second example shows the use of the
 maxdigits field, with a value of 4, to not require the user to press the
 # key when done entering the
 password.
We went on to show how you
 could provide a path to the password field, which would allow you to
 utilize a file for authentication. Using an external file can be useful
 if you want to use an external script to rotate the password fairly
 often. One of the particular uses we can think of would be the SecurID
 system, by RSA, which uses cards that contain a number that rotates over
 a period of time to be synchronized with a centralized server that is
 using the same algorithm to generate passwords. If you wanted to tie
 this system into Asterisk, you could have a script that rotated the key
 on a timely basis.
Instead of using a file for
 the location of the password, there is an option that lets you use the
 Asterisk DB. With the d flag, we can
 tell Authenticate() that the path
 we’re providing is that of a family/key relationship in the AstDB. An
 additional flag, r, can also be
 provided that removes the key from the database upon successful
 authentication, which provides a method for one-time-use
 passwords.
The Authenticate() application is a general
 purpose authentication mechanism which provides a base layer without
 taking into consideration which user or caller is attempting to
 authenticate. It would be fairly straightforward, however, to add that
 layer with some additional dialplan, or you could even utilize some of
 the dialplan we’ve provided in this book.

See Also

Authenticating Callers Using Voicemail Credentials, Authenticating Callers Using Read()

Authenticating Callers Using Voicemail Credentials

Problem

You need to provide an
 authentication mechanism in your dialplan, but wish to use the
 credentials already in place for retrieving voicemail.

Solution

[Authentication]
exten => start,1,Verbose(2,Attempting to authenticate caller with voicemail creds.)
 same => n,Playback(silence/1)

; This is where we do our authentication
 same => n,VMAuthenticate(@default)

 same => n,Verbose(2,The caller was authenticated if we execute this line.)
 same => n,Goto(authenticated,1)

exten => authenticated,1,Verbose(2,Perform some actions.)
 ; would contain 'default'.
 same => n,Verbose(2,Value of AUTH_CONTEXT: ${AUTH_CONTEXT})
 ; mailbox '100' was authenticated.
 same => n,Verbose(2,Value of AUTH_MAILBOX: ${AUTH_MAILBOX})
 same => n,Playback(all-your-base)
 same => n,Hangup()
If you wanted to explicitly
 define the mailbox to authenticate against, you could place the
 extension number to authenticate with in front of the voicemail
 context:
same => n,VMAuthenticate(100@default)
And if you don’t like the introductory prompts that VMAuthenticate() plays, you could modify your
 dialplan to play a different initial prompt by adding the s flag:
same => n,Playback(extension)
same => n,VMAuthenticate(@default,s)
Also, if we wanted to
 provide the option of letting someone skip out of authenticating
 altogether, and perhaps speak with an operator, we could provide the
 a extension in our context, which
 allows the user to press * to jump to
 the a extension:
[Authentication]
exten => start,1,Verbose(2,Attempting to authenticate caller with voicemail creds.)
 same => n,Playback(silence/1)

; This is where we do our authentication
 same => n,VMAuthenticate(@default)

 same => n,Verbose(2,The caller was authenticated if we execute this line.)
 same => n,Goto(authenticated,1)

exten => a,1,Verbose(2,Calling the operator.)
 same => n,Dial(SIP/operator,30)
 same => n,Voicemail(operator@default,u)
 same => n,Hangup()

Discussion

The VMAuthenticate() application provides us a
 useful tool for authenticating callers using credentials the user
 already knows, and uses often. By using the caller’s own voicemail box
 number and password, it is one less piece of authentication information
 to be memorized on the part of the caller. It also provides a
 centralized repository of credentials the administrator of the system
 can control and enforce to be secure. Since we have the ability to skip
 playing back the initial prompts, we could obtain the mailbox number
 used for authentication in several ways: by asking the user to provide
 it using another application or a lookup from a database, or simply by
 dialing it from the phone and performing a pattern match.
Another advantage is
 providing the ability to quit out of the authentication mechanism and be
 connected to a live agent, who can then perform the authentication for
 the caller using information stored in his database and then transfer
 the caller to the part of the system which would have required her
 authentication credentials.

See Also

Authenticating Callers Using Read(), Authenticating Callers

Authenticating Callers Using Read()

Problem

You want to authenticate
 callers using a custom set of prompts and logic.

Solution

A basic system which uses a
 static pin number for authentication:
[Read_Authentication]
exten => start,1,NoOp()
 same => n,Playback(silence/1)
 same => n,Set(VerificationPin=1234) ; set pin to verify against
 same => n,Set(TriesCounter=1) ; counter for login attempts
 same => n(get_pin),Read(InputPin,enter-password) ; get a pin from
 ; from the caller

; Check if the pin input by the caller is the same as our verification pin.
 same => n,GotoIf($["${InputPin}" = "${VerificationPin}"]?pin_accepted,1)

; Increment the TriesCounter by 1
 same => n,Set(TriesCounter=${INC(TriesCounter)})
 same => n,GotoIf($[${TriesCounter} > 3]?too_many_tries,1)
 same => n,Playback(vm-incorrect)
 same => n,Goto(get_pin)

exten => pin_accepted,1,NoOp()
 same => n,Playback(auth-thankyou)
 same => n,Hangup()

exten => too_many_tries,1,NoOp()
 same => n,Playback(vm-incorrect)
 same => n,Playback(vm-goodbye)
 same => n,Hangup()
We can modify the dialplan slightly to provide greater security by
 requiring an account code and a pin, which can be loaded from the
 AstDB:
[Read_Authentication]
exten => start,1,NoOp()
 same => n,Playback(silence/1)

; Set a couple of counters for login attempts
 same => n,Set(TriesCounter=1)
 same => n,Set(InvalidAccountCounter=1)

; Request the access code (account code)
 same => n(get_acct),Read(InputAccountNumber,access-code)
; make sure we have an account number
 same => n,GotoIf($[${ISNULL(${InputAccountNumber})}]?get_acct)

; Request the password (pin)
 same => n(get_pin),Read(InputPin,vm-password)

; Check the database to see if a password exists for the account number entered
 same => n,GotoIf($[${DB_EXISTS(access_codes/${InputAccountNumber})}]?
have_account,1:no_account,1)

; If a pin number exists check it against what was entered
exten => have_account,1,NoOp()
 same => n,Set(VerificationPin=${DB_RESULT})
 same => n,GotoIf($["${InputPin}" = "${VerificationPin}"]?pin_accepted,1)
 same => n,Set(TriesCounter=${INC(TriesCounter)})
 same => n,GotoIf($[${TriesCounter} > 3]?too_many_tries,1)
 same => n,Playback(vm-incorrect)
 same => n,Goto(start,get_pin)

; If no account exists, request a new access code be entered
exten => no_account,1,NoOp()
 same => n,Playback(invalid)
 same => n,Set(InvalidAccountCounter=${INC(InvalidAccountCounter)})
 same => n,GotoIf($[${InvalidAccountCounter} > 3]?too_many_tries,1)
 same => n,Goto(start,get_acct)

; Account and pin were verified
exten => pin_accepted,1,NoOp()
 same => n,Playback(auth-thankyou)
 same => n,Hangup()

; Sorry, too many attempts to login. Hangup.
exten => too_many_tries,1,NoOp()
 same => n,Playback(vm-incorrect)
 same => n,Playback(vm-goodbye)
 same => n,Hangup()
We added the access code
 (555) and pin (1234) to the AstDB using the following command:
*CLI> database put access_codes 555 1234

Discussion

If you’ve already looked at
 the solutions in Recipes and , what
 you’ll immediately notice is that the other solutions are quite a bit
 more compact. The main reason is that all of the loop control is handled
 within the dialplan application, whereas in this case we’re defining the
 loop control with dialplan logic and handling the number of loops and
 what to do on failure ourselves. With greater control comes greater
 complexity, and that is illustrated in the examples provided. The
 advantage to this greater level of verbosity is the control at each
 step: which prompts are played, when they’re played, and how often they
 are played. We also get to control the method of authentication.
In our first example, we
 showed a fairly basic authentication method which simply asked the
 caller for a password that we statically defined within the
 dialplan.[1] After entering the pin, we check what the user entered
 against what we set in the VerificationPin channel variable. If the
 numbers do not match, we increment a counter, test to see the number has
 increased to greater than 3, and, if not, request that the caller
 re-enter her pin. If the number of tries exceeds 3, then we play a
 prompt saying goodbye and hang up.
Our second example was
 expanded to include both an access code (account code) and a password
 (pin) which we’ve written to the AstDB. When the caller enters the
 dialplan, we request an access code and a password. We then check the
 AstDB using DB_EXISTS() to determine
 if the account number exists in the database. If it does not, then we
 inform the user that the account does not exist using a dialplan defined
 by the no_account extension. This is
 followed by a check to determine if the caller has entered an invalid
 account number and, if so, determine if this has happened more than 3
 times, in which case we then disconnect the caller.
If the caller has entered a
 valid account number, we then handle additional logic in the have_account extension, where we verify the
 pin number entered against what was returned from the database. If
 everything is valid, then we play back a prompt in the pin_accepted extension, and hang up the call
 (although it’s implied additional logic could then be handled now that
 the caller has been validated).
Because the solutions
 described contain a lot of dialplan logic and aren’t tied to any
 particular dialplan application (other than Read(), which we’re using for data input), the
 solutions could easily be modified to authenticate against other
 external sources of data. For example, the REALTIME() functions could be used to gather
 credentials from an LDAP database, or func_odbc could be employed to gather
 information from a relational database. You could even use CURL() to pass the data collected from the
 caller to authenticate against a web page which could then return
 account information to the caller. The possibilities with custom
 dialplan really are only limited by the problems encountered and solved
 by your imagination.

See Also

Authenticating Callers Using Voicemail Credentials, Authenticating Callers, Looping in the Dialplan, Counting and Conditionals

[1] Of course we could have defined that as a global variable in
 the [globals] section.

Debugging the Dialplan with Verbose()

Problem

You would like to insert
 debugging into your dialplan that can be enabled on a global,
 per-device, or per-channel basis.

Solution

Use something like this
 chanlog GoSub() routine:
[chanlog]
exten => s,1,GotoIf($[${DB_EXISTS(ChanLog/all)} = 0]?checkchan1)
 same => n,GotoIf($[${ARG1} <= ${DB(ChanLog/all)}]?log)
 same => n(checkchan1),Set(KEY=ChanLog/channel/${CHANNEL})
 same => n,GotoIf($[${DB_EXISTS(${KEY})} = 0]?checkchan2)
 same => n,GotoIf($[${ARG1} <= ${DB(${KEY})}]?log)
 same => n(checkchan2),Set(KEY=ChanLog/channel/${CUT(CHANNEL,-,1)})
 same => n,GotoIf($[${DB_EXISTS(${KEY})} = 0]?return)
 same => n,GotoIf($[${ARG1} <= ${DB(${KEY})}]?log)
 same => n(return),Return() ; Return without logging
 same => n(log),Verbose(0,${ARG2})
 same => n,Return()

Discussion

The chanlog GoSub() routine takes two arguments:
	ARG1
	A numeric log
 level

	ARG2
	The log
 message

Channel logging using
 this routine will be sent to the Asterisk console at verbose level 0,
 meaning that they will show up when you want them to, regardless of the
 current core set verbose setting.
 This routine uses a different method, values in AstDB, to control what
 messages show up. See Table 1-1 for the
 AstDB entries read in by the chanlog
 routine. If the log level argument is less than or equal to one of these
 matched entries in the AstDB, then the message will be logged.
Table 1-1. chanlog AstDB entries
	Family	Key	Description
	ChanLog/	all	This setting is applied to all channels.
	ChanLog/	channels/<device>	The chanlog routine will also look for
 an entry that matches the part of the channel name that comes
 before the -. For example, if
 the channel name is SIP/myphone-00112233, the routine will
 look for a key of channels/SIP/myphone.
	ChanLog/	channels/<full_channel>	The chanlog routine
 also checks for a match against the full channel name.

Once this routine has
 been added to your dialplan, you can start adding log statements to any
 extensions on your system. As an example, here is a typical company main
 menu that now has chanlog messages
 for each step:
exten => 6000,1,GoSub(chanlog,s,1(1,[${CHANNEL}] Entered main menu))
 same => n,Background(main-menu)
 same => n,WaitExten(5)

exten => 1,1,GoSub(chanlog,s,1(1,[${CHANNEL}] Pressed 1 for Sales))
 same => n,Goto(sales,s,1)

exten => 2,1,GoSub(chanlog,s,1(1,[${CHANNEL}] Pressed 2 for Technical Support))
 same => n,Goto(tech_support,s,1)

exten => 3,1,GoSub(chanlog,s,1(1,[${CHANNEL}] Pressed 3 for Customer Service))
 same => n,Goto(customer_service,s,1)

exten => 4,1,GoSub(chanlog,s,1(1,[${CHANNEL}] Pressed 4 for Training))
 same => n,Goto(training,s,1)

exten => 5,1,GoSub(chanlog,s,1(1,[${CHANNEL}] Pressed 5 for Directory))
 same => n,Directory()

exten => 0,1,GoSub(chanlog,s,1(1,[${CHANNEL}] Pressed 0 for Operator))
 same => n,Goto(operator,s,1)

exten => i,1,GoSub(chanlog,s,1(1,[$CHANNEL}] invalid "${INVALID_EXTEN}"))
 same => n,Goto(6000,1)

exten => t,1,GoSub(chanlog,s,1(1,[${CHANNEL}] Timed out waiting for digit))
 same => n,Goto(6000,1)

To see the output, we
 will first disable all other verbose messages from Asterisk and then
 turn on chanlog messages for all
 channels:
*CLI> core set verbose 0
*CLI> database put ChanLog all 1
Now when someone calls
 into the main menu, he will see messages like this at the Asterisk
 console:
[SIP/000411223344-000000b8] Entered main menu
[SIP/000411223344-000000b8] Pressed 4 for Training

See Also

For more information about
 other types of logging and monitoring of Asterisk systems, see Chapter
 24, “System Monitoring and Logging,” of Asterisk: The
 Definitive Guide (O’Reilly).

Chapter 2. Call Control

Introduction

The recipes in this chapter focus on
 making and controlling phone calls in Asterisk. The rich set of
 possibilities for controlling calls is part of what makes Asterisk a
 telephony applications platform and
 not just another PBX.

Creating Call Limits Using Groups

Problem

You would like to implement custom
 call limits in the Asterisk dialplan.

Solution

Use the GROUP() and GROUP_COUNT() dialplan functions:
exten => _1NXXNXXXXXX,1,Set(GROUP(outbound)=myprovider)
 same => n,Set(COUNT=${GROUP_COUNT(myprovider@outbound)})
 same => n,NoOp(There are ${COUNT} calls for myprovider.)
 same => n,GotoIf($[${COUNT} > 2]?denied:continue)
 same => n(denied),NoOp(There are too many calls up already. Hang up.)
 same => n,HangUp()
 same => n(continue),GoSub(callmyprovider,${EXTEN},1})

Discussion

In this example solution, we have
 shown how you could use the GROUP()
 and GROUP_COUNT() functions to limit
 the number of calls sent to a provider to no more than two calls at a
 time. You can think of using the GROUP() function as a way to apply a marker to
 a channel. GROUP_COUNT() is the
 method of getting a count of how many active channels are up with a
 given mark on them.
The argument provided to the
 GROUP() function is a category. In
 our example, the category used is outbound. The first line sets the channel’s
 outbound group value to myprovider. On the next
 line, we set the COUNT variable to
 the number of channels that are marked as being in the myprovider group within the outbound category. The rest of the example
 demonstrates using this value in a conditional statement so that the
 dialplan can continue down two different paths depending on the number
 of channels that matched the GROUP_COUNT() criteria.
One reason that you might want to
 use this particular example is if you want to limit your exposure to
 fraudulent calls if an account on your system were to be compromised. An
 attacker would likely send as many calls through your system at a time
 as they could, so by limiting the number of calls that cost you money,
 you limit how many charges an attacker could rack up on you before you
 catch it.
GROUP() and GROUP_COUNT() can be used in a lot of other
 cases, too. By using a very similar approach to this example, you can
 also limit the number of calls that a specific user account is able to
 make at any given time. Another use would be to set a global call limit
 on the system.

See Also

The usage of GROUP() and GROUP_COUNT() comes up a number of times in
 Asterisk: The
 Definitive Guide (O’Reilly). References can be found
 in Chapters 13 (“Automatic Call Distribution (ACD) Queues”), 14 (“Device
 States”), 22 (“Clustering”), 23 (“Distributed Universal Number Discovery
 (DUNDi)”), and 26 (“Security”).

Originating a Call Using the CLI

Problem

As an Asterisk system administrator,
 you would like to quickly originate a new call from the Asterisk
 command-line interface.

Solution

Use the channel originate CLI command. To connect a
 channel directly to an application:
*CLI> channel originate SIP/myphone application Playback demo-congrats
To connect a channel to an extension
 in the dialplan:
*CLI> channel originate SIP/myphone extension 1234@DialplanContext

Discussion

Originating calls is a fairly common
 task. The CLI version of this functionality is most useful when doing
 quick test calls while writing Asterisk dialplan. The examples above
 showed how to originate a call to a phone and connect it to something
 Asterisk. When testing, the use of a Local channel instead of a real phone is
 incredibly handy. For the purposes of quickly testing some dialplan
 logic, you can just create an extension that runs the Wait() application:
; /etc/asterisk/extensions.conf

[default]
exten => wait,1,Answer()
 same => n,Wait(300)
 same => n,Hangup()

exten => newexten,1,Verbose(1,I wonder if my CUT() works...)
 same => n,Set(VAR=one-two-three)
 same => n,Verbose(1,one = ${CUT(VAR,-,1)})

Now, to quickly test whether this
 bit of dialplan logic is working correctly, you can run the
 following:
*CLI> channel originate Local/wait@default extension newexten@default
 I wonder if my CUT() works...
 one = one

See Also

Originating a Call Using the Dialplan, Originating a Call From a Call File,
 Originating a Call From the Manager Interface

Originating a Call Using the Dialplan

Problem

You would like to originate a call
 from the Asterisk dialplan.

Solution

Asterisk provides an application for
 originating calls from the dialplan. To originate a call and connect it
 to an application, you would do this:
exten => s,1,Originate(SIP/myphone,app,Playback,all-your-base)
Alternatively, you can originate a
 call and connect it to an extension in the dialplan:
exten => s,1,Originate(SIP/myphone,exten,default,s,1)

Discussion

The Originate() application takes up to 5
 arguments. The first two are:
	Tech/data
	This is the channel technology and associated data that the
 call will be originated to. The syntax is the same as is used with
 the commonly used Dial()
 application.

	originate mode
	There are two originate modes: app and exten. The app originate mode is used to connect
 the originated call to an Asterisk application. If more complex
 call processing is desired, the exten originate mode can be used to
 connect the originated call to an extension in the
 dialplan.

The rest of the arguments depend on
 which originate mode is being used. In the case of the app originate mode, the arguments are:
	application
	This is the dialplan application that will be answered when
 the dialed channel answers.

	application arguments
	Any other arguments are passed to the application being
 executed.

If the originate mode is exten, the rest of the arguments are:
	context
	This is the context in the dialplan that should be used to
 find the extension to run. This argument is required.

	extension
	This is the extension in the dialplan that will be executed.
 If this argument is not specified, the s extension will be used.

	priority
	This is the priority of the extension to execute. If this is
 not specified, dialplan execution will start at priority 1, which is almost always what you
 want.

There are a lot of cases where you
 might want to originate a call from the dialplan. One such example is
 related to the handling of paging. Perhaps you would like to write an
 extension that allows a caller to record and review a message to be
 played out through a paging system, but allow the caller to hang up
 after recording it, instead of doing the page live or requiring the
 caller to stay on the phone while the paging process finishes. The way
 you can accomplish this task is by first writing the dialplan that
 allows the caller to record something. Afterwards, the Originate() application will be used to
 trigger the paging process to begin. That way, even if the caller hangs
 up, the paging process will continue. Let’s get on to the
 example:
[globals]
PHONES_TO_PAGE=SIP/phoneA&SIP/phoneB&SIP/phoneC

[paging]
exten => 500,1,Answer()
 same => n,Record(/tmp/page.wav)
 same => n,Originate(Local/pageplayback@paging,exten,paging,page,1)
 same => n,Hangup()

exten => page,1,Answer()
 ;
 ; This causes Polycom phones to auto-answer the call.
 ;
 same => n,SIPAddHeader(Alert-Info: Ring Answer)
 same => n,Page(${PHONES_TO_PAGE})
 same => n,Hangup()

exten => pageplayback,1,Answer()
 same => Playback(/tmp/page.wav)

In this example, a caller would dial
 500 to initiate the paging process.
 The Record() application would allow
 them to record their announcement to a file. The recording will end and
 be saved to disk when the caller presses the # key on their phone. The
 paging process can be canceled from this point by just hanging up. Next,
 the Originate() application starts a
 new call. On one end of the call is a Local channel, which is executing a short
 extension that just plays back the recording that was just left. The
 other end of the call is an extension that uses the Page() application.
Before executing the Page()
 application, the SIPAddHeader()
 application is used to set a header that will be added to outbound call
 requests to SIP phones since we want the call to be automatically
 answered by the phones. This specific example will work for Polycom
 phones. For examples of how to get other brands of phones to
 automatically answer, see the “Parking and Paging” chapter of Asterisk: The
 Definitive Guide.

See Also

The “External Services” chapter of
 Asterisk: The
 Definitive Guide has a section on integrating
 Asterisk with calendar systems. One of the features provided by calendar
 integration in Asterisk is the ability to have calls originated based on
 calendar events. One of the really great examples in that book shows how
 to read information out of the calendar event in the dialplan and then
 use the Originate() application to
 make calls to all participants in the meeting.
Other recipes related to this one
 include Originating a Call Using the CLI, Originating a Call From a Call File, and Originating a Call From the Manager Interface.

Originating a Call From a Call File

Problem

You would like to programmatically
 originate a call outside of Asterisk directly from the Asterisk server
 in the simplest way possible.

Solution

Create a call file. Use your
 favorite text editor to create a file called example.call with the following
 contents:
Channel: SIP/YourPhone

Context: outbound
Extension: 12565551212
Priority: 1
Once the file has been created, move
 it to the Asterisk spool directory:
$ mv example.call /var/spool/asterisk/outgoing/

Discussion

Call files are a great
 straightforward way to originate a call from outside of Asterisk. There
 are some things that are important to understand about call files if you
 choose to use them, though. First, you must understand the syntax and
 options that are allowed from within a call file. Beyond that, there are
 some nuances regarding how Asterisk processes call files that you should
 be aware of.
Every line in a call file is
 specified as a key/value pair:
key: value
The one line that is required in
 every call file is the specification of which channel to originate a
 call to:
Channel: Tech/data
There are two modes for all of the
 different methods of originating calls. The first mode is for when you
 connect a channel directly to an application. The second mode is for
 when you connect a channel to an extension in the dialplan. For the
 first mode, connecting to an application, you must specify which
 application and the arguments to pass to it:
Application: MeetMe
Data: 1234
For the other mode, connecting a
 channel to an extension in the dialplan, you must specify the context,
 extension, and priority in the call file:
Context: default
Extension: s
Priority: 1
The rest of the parameters that may
 be specified in call files are all optional, but some of them are
 incredibly useful:
	Codecs: ulaw,
 alaw, gsm
	By default, Asterisk will
 allow the outbound channel created at the start of the call
 origination process choose whatever codec(s) it wants. If you
 would like to impose some limits on which codecs the channel may
 choose, you can specify them as a comma delimited list with the
 Codecs option.

	MaxRetries:
 2
	If the outbound call to the
 specified channel fails, this is how many times the call will be
 retried. By default, the call will only be attempted one
 time.

	RetryTime:
 60
	This option specifies the
 number of seconds to wait in between retries. The default is
 300 seconds.

	WaitTime:
 30
	This is the number of seconds
 to wait for an answer from the outbound call before considering it
 a failed attempt. By default, this is set to 45 seconds.

	CallerID:
 "Russell Bryant" <(256)
 555-1212>
	Specify the CallerID to use
 for the outbound call. By default, no CallerID information is
 provided for the outbound called made to Channel.

	Account:
 accountcode
	Set the accountcode field on the outbound
 channel. By default, this field is not set at all. The
 accountcode is used in both Call Detail Record
 (CDR) and Channel Event Logging (CEL) processing. More information
 about CDR and CEL can be found in the “Monitoring and Logging”
 chapter of Asterisk:
 The Definitive Guide.

	AlwaysDelete:
 Yes
	Always delete the call file
 when Asterisk is done processing it. Normally, once Asterisk has
 finished successfully making the call or has given up after the
 configured number of retries, the call file will be deleted. If
 this option is set to No and
 the timestamp of the file is modified before Asterisk finishes
 processing it to be some point in the future, the file will not be
 deleted. The result is that Asterisk will process this file again
 when the new time is reached.

	Set:
 CHANNELVAR=value
	Set a channel variable on the
 outbound channel to a specified value.

	Set:
 FUNCTION(functionargs)=value
	Set a dialplan function on the
 outbound channel to a specified value.

	Archive:
 Yes
	Archive call files after
 processing them. If this option is set to Yes, instead of deleting the call file
 after processing, Asterisk will move it to the /var/spool/asterisk/outgoing_done/
 directory. Before the file is moved, Asterisk will add a Status line to the file to indicate if
 the originated call was Completed, Expired, or Failed.

Now that we have covered all of the options that can be specified,
 the last bit of business is to make you aware of some of the important
 details about how Asterisk processes call files. Here are two critical
 issues you must keep in mind:
	Never create a call file in the
 /var/spool/asterisk/outgoing/
 directory. Asterisk starts processing these files as soon as they
 are created. If you create it directly in this directory, Asterisk
 may read the contents before you are finished writing the file.
 Instead, always create the file somewhere else on the filesystem and
 move it into this directory when you are ready to make Asterisk
 aware of its presence.
vi /tmp/example.call
/var/spool/asterisk/outgoing/

	The timestamp on a call file is
 important. If you set the timestamp to be in the future, Asterisk
 will not process the file until that time is reached.

See Also

Originating a Call Using the CLI,
 Originating a Call Using the Dialplan, and Originating a Call From the Manager Interface

Originating a Call From the Manager Interface

Problem

You would like to programmatically
 originate a call over a network connection to Asterisk.

Solution

Use the Originate action in the Asterisk Manager
 Interface (AMI):
Action: Originate
Channel: SIP/myphone
Exten: 6001
Context: LocalExtensions
Priority: 1
Timeout: 30000
CallerID: "Asterisk" <6000>
Async: true

Discussion

The Originate action in the AMI allows you to send
 a request over a TCP connection for Asterisk to make a call. This is the
 most popular method for originating calls from custom applications. The
 example provided in the solution starts by having Asterisk make a new
 call to SIP/myphone. If the phone does not
 answer within 30 seconds, the call will be aborted. If the call is
 answered, it is connected to extension 6001
 in the LocalExtensions context in the
 dialplan.
Alternatively, the Originate action can be used to connect a
 channel directly to an application. By starting with the example
 provided in the solution, we can modify it to connect the called phone
 to conference bridge number 1234 without going through the
 dialplan:
Action: Originate
Channel: SIP/myphone
Application: MeetMe
Data: 1234
Timeout: 30000
CallerID: "Asterisk" <6000>
Async: true

There are a few more useful optional
 headers that can be provided with the Originate action:
	ActionID: <value>
	This is a custom value that
 will also be included in any responses to this request. It can be
 helpful in custom applications that may have many outstanding
 requests at any one time to ensure that responses are associated
 with the proper request.

	Variable: NAME=VALUE
	This header can be specified
 multiple times in an Originate
 request. It will set channel variables on the outbound channel.
 This can also be used to set dialplan functions. Just use a
 function such as CDR(customfield) in the NAME portion of the header.

	Account
	Specify the account code that
 will be placed in the CDR for this call.

For additional information about the
 Originate manager action included
 with your version of Asterisk, use this command at the Asterisk
 CLI:
*CLI> manager show command Originate

See Also

For more information about the
 Asterisk Manager Interface, see the AMI chapter in Asterisk: The
 Definitive Guide.
For recipes that are directly
 related to this one, see Originating a Call Using the CLI, Originating a Call Using the Dialplan, and Originating a Call From a Call File.

Using the FollowMe() Dialplan Application

Problem

You would like to call a series of
 phone numbers to attempt to locate a person when their extension is
 dialed.

Solution

Use the FollowMe() application. First you must
 configure the application in
 /etc/asterisk/followme.conf:
;
; Configure what to do when FollowMe() is requested for Russell.
; We are going to try his desk phone first, and then try to call
; his cell phone.
;
[russell]
;
; FollowMe() will use this context in the Asterisk dialplan
; to make outbound calls.
;
context = trusted
;
; Call this number first. Give up after 20 seconds.
;
number = 7101,20
;
; Call this number second. Give up after 20 seconds.
;
number = 12565551212,20

[leif]
context = trusted
number = 7102,20
number = 12565559898,20
Now create extensions in the
 dialplan that will utilize the FollowMe() application to locate the called
 party:
[public_extensions]
exten => 7001,1,FollowMe(russell)

exten => 7002,1,FollowMe(leif)

[trusted]
exten => 7101,1,Dial(SIP/russell_desk)

exten => 7102,1,Dial(SIP/leif_desk)

exten => _1NXXNXXXXXX,1,Dial(SIP/${NUMBER}@outbound_provider)

Discussion

Admittedly, everything that the
 FollowMe() application does for you
 can be implemented directly in the dialplan. However, it takes more
 work. If this application does what you want, then save yourself the
 extra effort and just use FollowMe().
When the FollowMe() application executes, it is going
 to load the list of phone numbers that were configured in followme.conf and dial them in the order they
 were specified. When one of the outbound calls is answered, a prompt
 will be played requesting that the call be acknowledged by pressing a
 key. One of the main reasons for requiring acknowledgment is that it
 ensures that if the call is answered by voicemail that FollowMe() continues and
 tries other numbers.

See Also

There are some additional options
 available in the followme.conf
 file, but they are rarely used. For additional information on the
 current set of available options, see configs/followme.conf.sample in the Asterisk
 source. For some additional information about the syntax of FollowMe() in the dialplan, check the
 documentation built in to Asterisk:
*CLI> core show application FollowMe
If you are interested in building
 similar functionality directly in the dialplan, see Building Find-Me-Follow-Me in the Dialplan.

Building Find-Me-Follow-Me in the Dialplan

Problem

You would like to implement
 find-me-follow-me in the Asterisk dialplan.

Solution

[public_extensions]
;
; Find Russell.
;
exten => 7001,1,Progress()
 same => n,Playback(followme/pls-hold-while-try,noanswer)
 same => n,Dial(Local/7101@trusted,20,rU(ackcall^s^1))
 same => n,Dial(Local/12565551212@trusted,20,rU(ackcall^s^1))
 same => n,Playback(followme/sorry,noanswer)
 same => n,Hangup()

;
; Find Leif.
;
exten => 7002,1,Progress()
 same => n,Playback(followme/pls-hold-while-try,noanswer)
 same => n,Dial(Local/7102@trusted,20,rU(ackcall^s^1))
 same => n,Dial(Local/12565559898@trusted,20,rU(ackcall^s^1))
 same => n,Playback(followme/sorry,noanswer)
 same => n,Hangup()

[trusted]
exten => 7101,1,Dial(SIP/russell_desk)

exten => 7102,1,Dial(SIP/leif_desk)

exten => _1NXXNXXXXXX,1,Dial(SIP/${NUMBER}@outbound_provider)

[ackcall]
exten => s,1,Background(followme/no-recording&followme/options)
 same => n,WaitExten(5)
 same => n,Set(GOSUB_RESULT=BUSY)

exten => 1,1,NoOp()

exten => 2,1,Set(GOSUB_RESULT=BUSY)

exten => i,1,Set(GOSUB_RESULT=BUSY)

Discussion

This example implements the same
 functionality provided by the FollowMe() application
 shown in Using the FollowMe() Dialplan Application. The most important
 difference is that if you want to tweak any of the behavior, it is much
 easier to do so in the Asterisk dialplan as opposed to modifying the C
 code of the FollowMe()
 application.
Here is what happens when someone
 dials 7001 to reach Russell:
exten => 7001,1,Progress()
The Progress() application is used for telephony
 signaling. We do not want to answer the call yet, but we want to start
 playing audio. This is often referred to as early media in a phone call.
 The use of Progress() in the dialplan
 maps to sending a 183 Session
 Progress request in SIP:
 same => n,Playback(followme/pls-hold-while-try,noanswer)
Now that we have told the calling
 channel to expect early media, we are going to play a prompt without
 answering the call. This prompt says “Please hold while I try to locate
 the person you are calling”:
 same => n,Dial(Local/7102@trusted,20,rU(ackcall^s^1))
There is a lot packed into this
 line. First, we are making an outbound call to a Local channel. This local extension just makes
 an outbound call to a single SIP device. We could have simply dialed
 that SIP device directly and the behavior would have been the same.
 However, the use of the Local channel
 is more in line with how the FollowMe() application works.
In the followme.conf file,
 you configure phone numbers, not devices, for the application to call.
 We specify a 20 second timeout for this outbound call attempt. Finally,
 we set a couple of options. The first option is r, which ensures that Asterisk generates a
 ringback tone. We want this because we have already indicated to the
 caller that we will be providing early media.
An alternative to this would be to use the m option of Dial(), which would provide hold music instead
 of ringback. Finally, we use the U
 option, which executes a GoSub()
 routine on the called channel after it answers, but before connecting it
 to the inbound channel. The routine we are using is ackcall, which gives the called channel the
 option of whether to accept the call. We will come back to the
 implementation of the ackcall routine
 shortly.
Now let’s look at the next step:
 same => n,Dial(Local/12565551212@trusted,20,rU(ackcall^s^1))
This step is identical to the last
 one except that it is calling a different number. You could have as many
 of these steps as you would like.
The next line is:
 same => n,Playback(followme/sorry,noanswer)
If the caller makes it this far in
 the dialplan, Asterisk was not able to find the called party at any of
 the configured numbers. The prompt says “I’m sorry, but I was unable to
 locate the person you were calling”.
Finally, we have:
 same => n,Hangup()
As you might have guessed, this
 hangs up the call. Now let’s go back to the implementation of the
 ackcall GoSub() routine that is executed by the
 Dial() application:
[ackcall]
exten => s,1,Background(followme/no-recording&followme/options)
 same => n,WaitExten(5)
 same => n,Set(GOSUB_RESULT=BUSY)

exten => 1,1,NoOp()

exten => 2,1,Set(GOSUB_RESULT=BUSY)

exten => i,1,Set(GOSUB_RESULT=BUSY)
The execution of this routine
 begins at the s extension. The
 Background() application is going to
 play two prompts while also waiting for a digit to be pressed. The
 called party will hear “You have an incoming call. Press 1 to accept
 this call, or 2 to reject it.” After the prompts finish playing, the
 WaitExten() application will wait an
 additional five seconds for a key to be pressed. At this point, there
 are four different cases that may occur:
	The called party does nothing.
	In this case, the s extension will continue to the next
 step and the GOSUB_RESULT
 variable will be set to BUSY.
 This makes the Dial()
 application act like this outbound call attempt returned a busy
 response.

	The called party presses 1 to accept.
	The call will jump to the
 1 extension which does nothing.
 Control will return to the Dial() application and the caller and
 callee will be bridged together.

	The called party presses 2 to reject.
	The call will jump to the
 2 extension which sets the
 GOSUB_RESULT variable to
 BUSY. Dial() will treat this outbound call
 attempt as busy.

	The caller presses a different key.
	Asterisk will look for an
 extension that matches the key that was pressed but will not find
 one. The call will instead go to the i extension, which stands for invalid.
 The GOSUB_RESULT variable will
 be set to BUSY and Dial() will treat this outbound call
 attempt as busy.

See Also

Consider using the FollowMe() application as discussed in Using the FollowMe() Dialplan Application if you do not require the level of
 customization required by implementing this functionality in the
 dialplan.
For more information about
 Local channels, see Chapter 10, “Deeper into the
 Dialplan,” in Asterisk: The
 Definitive Guide.

Creating a Callback Service in the Dialplan

Problem

After a call has failed due to the
 destination being busy or otherwise unavailable, you would like to give
 the caller the option of being automatically called back when the
 destination becomes available.

Solution

Add the following options to the
 phone configuration sections of /etc/asterisk/sip.conf:
[phone1]
...
cc_agent_policy = generic
cc_monitor_policy = generic

[phone2]
...
cc_agent_policy = generic
cc_monitor_policy = generic
Next, add the *30 and *31
 extensions to your dialplan:
[phones]
;
; The extensions for dialing phones do not need to be changed.
; These are just simple examples of dialing a phone with a
; 20 second timeout.
;
exten => 7101,1,Dial(SIP/phone1,20)
 same => n,Hangup()

exten => 7102,1,Dial(SIP/phone2,20)
 same => n,Hangup()

;
; Dial *30 to request call completion services for the last
; call attempt.
;
exten => *30,1,CallCompletionRequest()
 same => n,Hangup()

;
; Dial *31 to cancel a call completion request.
;
exten => *31,1,CallCompletionCancel()
 same => n,Hangup()

Discussion

Call Completion Supplementary
 Services (CCSS) is a new feature in Asterisk 1.8. It allows you to
 request that Asterisk call you back after an unanswered or busy call
 attempt. In this example, we have used the generic agent and monitor policies. This method of configuration
 is the easiest to get working but only works for calls between phones
 connected to the same Asterisk system. The agent is the part of the system that operates
 on behalf of the caller requesting call completion services. The
 monitor is the part of the system
 that is in charge of monitoring the device (or devices) that were called
 to determine when they become available.
Using this dialplan, let’s go
 through an example where CCSS is used. Start by having 7001 call 7002, but let the call time out after the
 configured 20 seconds. In this case, the call has failed due to no
 response. The caller, 7001, can now
 request CCSS by dialing *30. This is
 referred to as Call Completion No Response (CCNR). You can verify the
 CCNR request at the Asterisk CLI:
*CLI> cc report status
1 Call completion transactions
Core ID Caller Status
--
20 SIP/phone1 CC accepted by callee
 |-->7102@phones
 |-->SIP/phone2(CCNR)

At this point, Asterisk is using its
 generic monitor implementation to wait for SIP/phone2 to become available. In the case of
 CCNR, it determines availability by waiting for the phone to make a
 call. When that call ends, Asterisk will initiate a call between
 SIP/phone1 and SIP/phone2 and the CCNR request will have been
 completed.
Another scenario is Call Completion
 Busy Subscriber (CCBS). This is the case when the called party is
 already on the phone. The process of requesting call completion services
 in this scenario is the same as before. The generic monitor will
 determine availability by waiting for the call that device is on to
 end.
Asterisk also supports extending
 CCSS across multiple servers using either SIP or ISDN (specifically ISDN
 in Europe). However, the configuration and operation of the protocol
 specific methods is outside the scope of this recipe.

See Also

The Asterisk project wiki, http://wiki.asterisk.org/, discusses CCSS.

Hot-Desking with the Asterisk Database

Problem

You need people to be able to log in
 to any device and accept calls at that location, a feature known as
 hot-desking.

Solution

[HotDesking]
; Control extension range using pattern matches

; Login with 71XX will logout existing extension at this location
; and log this device in with new extension.
; Logoff with 7000 from any device.
;

exten => 7000,1,Verbose(2,Attempting logoff from device ${CHANNEL(peername)})
 same => n,Set(PeerName=${CHANNEL(peername)})
 same => n,Set(CurrentExtension=${DB(HotDesk/${PeerName})})
 same => n,GoSubIf($[${EXISTS(${CurrentExtension})}]?
subDeviceLogoff,1(${PeerName},${CurrentExtension}):loggedoff)
 same => n,GotoIf($[${GOSUB_RETVAL} = 0]?loggedoff)
 same => n,Playback(an-error-has-occurred)
 same => n,Hangup()
 same => n(loggedoff),Playback(silence/1&agent-loggedoff)
 same => n,Hangup()

exten => _71XX,1,Verbose(2,Attempting to login device ${CHANNEL(peername)}
to extension ${EXTEN:1})
 same => n,Set(NewPeerName=${CHANNEL(peername)})
 same => n,Set(NewExtension=${EXTEN:1})

; Check if existing extension is logged in for this device (NewPeerName)
; -- If existing extension exists (ExistingExtension)
; -- get existing device name
; -- If no existing device
; -- (login) as we'll overwrite existing extension for this device
; -- If existing device name
; -- logoff ExistingExtension + ExistingDevice
; -- Goto check_device ---------------------------------------+
; -- If no existing extension exists |
; -- Check if existing device is logged in for this extension |
; (NewExtension) <---+
; -- If existing device exists
; -- Get existing extension
; -- If extension exists
; -- Logoff Device + Extension
; -- Login
; -- If no extension exists
; -- Remove device from AstDB
; -- Login
; -- If no device exists for NewExtension
; -- Login

; Tests:
; * Login 100 to 0000FFFF0001
; * Login 101 to 0000FFFF0001 (Result: Only 101 logged in)
; * Login 101 to 0000FFFF0002 (Result: Only 101 logged in to new location)
; * Login 100 to 0000FFFF0001 (Result: Both 100 and 101 logged in)
; * Login 100 to 0000FFFF0002 (Result: Only 100 logged into 0000FFFF0002
; -- change locations)
; * Login 100 to 0000FFFF0001 (Result: Only 100 logged in)

 same => n,Set(ExistingExtension=${DB(HotDesk/${NewPeerName})})
 same => n,GotoIf($[${EXISTS(${ExistingExtension})}]?get_existing_device)

 same => n(check_device),NoOp()
 same => n,Set(ExistingDevice=${DB(HotDesk/${NewExtension})})
 same => n,GotoIf($[${EXISTS(${ExistingDevice})}]?get_existing_extension)
 same => n,NoOp(Nothing to logout)
 same => n,Goto(login)

 same => n(get_existing_device),NoOp()
 same => n,Set(ExistingDevice=${DB(HotDesk/${ExistingExtension})})
 same => n,GotoIf($[${ISNULL(${ExistingDevice})}]?login)
 same => n,GoSub(subDeviceLogoff,1(${ExistingDevice},${ExistingExtension}))
 same => n,GotoIf($[${GOSUB_RETVAL} = 0]?check_device)
 same => n,Playback(silence/1&an-error-has-occurred)
 same => n,Hangup()

 same => n(get_existing_extension),NoOp()
 same => n,Set(ExistingExtension=${DB(HotDesk/${ExistingDevice})})
 same => n,GoSubIf($[${EXISTS(${ExistingExtension})}]?
subDeviceLogoff,1(${ExistingDevice},${ExistingExtension}):remove_device)
 same => n,GotoIf($[${GOSUB_RETVAL} = 0]?loggedoff)
 same => n,Playback(silence/1&an-error-has-occurred)
 same => n,Hangup()
 same => n(remove_device),NoOp()
 same => n,Set(Result=${DB_DELETE(HotDesk/${ExistingDevice})})
 same => n,Goto(loggedoff)

 same => n(loggedoff),Verbose(2,Existing device and extensions have
been logged off prior to login)
 same => n(login),Verbose(2,Now logging in extension ${NewExtension}
to device ${NewPeerName})
 same => n,GoSub(subDeviceLogin,1(${NewPeerName},${NewExtension}))
 same => n,GotoIf($[${GOSUB_RETVAL} = 0]?login_ok)
 same => n,Playback(silence/1&an-error-has-occurred)
 same => n,Hangup()

 same => n(login_ok),Playback(silence/1&agent-loginok)
 same => n,Hangup()

exten => subDeviceLogoff,1,NoOp()
 same => n,Set(LOCAL(PeerName)=${ARG1})
 same => n,Set(LOCAL(Extension)=${ARG2})
 same => n,ExecIf($[${ISNULL(${LOCAL(PeerName)})} |
${ISNULL(${LOCAL(Extension)})}]?Return(-1))
 same => n,Set(PeerNameResult=${DB_DELETE(HotDesk/${LOCAL(PeerName)})})
 same => n,Set(ExtensionResult=${DB_DELETE(HotDesk/${LOCAL(Extension)})})
 same => n,Return(0)

exten => subDeviceLogin,1,NoOp()
 same => n,Set(LOCAL(PeerName)=${ARG1})
 same => n,Set(LOCAL(Extension)=${ARG2})
 same => n,ExecIf($[${ISNULL(${LOCAL(PeerName)})} |
${ISNULL(${LOCAL(Extension)})}]?Return(-1))
 same => n,Set(DB(HotDesk/${LOCAL(PeerName)})=${LOCAL(Extension)})
 same => n,Set(DB(HotDesk/${LOCAL(Extension)})=${LOCAL(PeerName)})
 same => n,Set(ReturnResult=${IF($[${DB_EXISTS(HotDesk/${LOCAL(PeerName)})}
& ${DB_EXISTS(HotDesk/${LOCAL(Extension)})}]?0:-1)})
 same => n,Return(${ReturnResult})

Discussion

Hot-desking is a fairly common
 feature that is gathering increased traction as Asterisk systems are
 deployed because of the inherent flexibility the dialplan provides.
 Older, traditional PBX systems apply an extension number to either a
 line on the system or with a device itself. With Asterisk, we have the
 ability to apply dialplan logic and information stored in a local
 database (or external database) to determine where an extension rings.
 We could easily develop a system where an extension number does nothing
 but ring a cell phone, or a combination of devices (like in a paging
 system, or a group of sales agents).
In the dialplan provided for this
 example of hot-desking, we’ve allowed people to log in to any device by
 dialing 71XX where 1XX is the person’s
 extension number in the range 100 through 199. To log out the extension
 from the device, the user simply dials 7000 from the device to log out from. While it
 has made the dialplan and logic more complicated, the dialplan also
 takes into account other extensions already logged into a device someone
 wants to log in to, and automatically logs them out first. Additionally,
 if we were logged into another device previously and didn’t log out
 before changing locations, the dialplan will log the extension out from
 the other device first before logging it into the new location.
No external scripts or
 databases[2] have been employed, which helps demonstrate the
 flexibility of Asterisk. Let’s look at what happens when we log in an
 extension to a device that has no existing extension logged in.
First we do our checks as
 described by the logic flow in the comment block in the code. Figure 2-1 shows the visual representation of what
 we’re checking for before logging the extension in.
Note
You’ll need to be aware we haven’t
 added any logic to authenticate callers. This may not be necessary,
 but, if so, you can add some additional logic using one of the caller
 authentication recipes found in Chapter 1. Additionally, we haven’t added any
 prompts notifying the callers that an existing extension is logged in
 prior to logging them out, as we wanted to keep the fundamental logic
 of the hot-desking application so you have a base to work with.

[image: Login check logic]

Figure 2-1. Login check logic

To log in extension 100, we’ll dial
 7100, which will place the
 appropriate information into the AstDB: two rows located within the
 HotDesk family. After you’ve logged
 in, you can see the entries in the database by entering database show HotDesk from the Asterisk
 console:
*CLI> database show HotDesk
/HotDesk/0000FFFF0001 : 100
/HotDesk/100 : 0000FFFF0001
2 results found.
The two entries are to provide a
 link between an extension→device and
 device→ extension. When logging off a device we’ll
 need to know what extension to remove from the database, but when
 dialing an extension we’ll need to know what device to call.[3] The flowchart in Figure 2-1
 shows how we’ve performed our checks to help account for various
 situations. If we log in to a device, we have to make sure there wasn’t
 another extension already logged in, and if so, log it out first.
 Another situation is where we were logged into another device and moved
 somewhere else, and need to move locations, which means we have to log
 out our extension from the other device first. And because we have
 multiple entries associated with each login, we have to verify that
 we’ve removed and modified both entries.
The following tests were performed
 to validate the logic used:
	Login 100 to
 0000FFFF0001

	Login 101 to
 0000FFFF0001 (Result: Only 101
 logged in)

	Login 101 to
 0000FFFF0002 (Result: Only 101
 logged in to new location)

	Login 100 to
 0000FFFF0001 (Result: Both 100
 and 101 logged in)

	Login 100 to
 0000FFFF0002 (Result: Only 100
 logged into 0000FFFF0002—change locations)

	Login 100 to
 0000FFFF0001 (Result: Only 100
 logged in)

Using these tests, you can then step
 through the logic and look at the dialplan to understand all the checks
 going on, and validate that things are working as they should.
Warning
It is possible that if two people
 attempt to log in to the same extension at the same time, or if
 someone else is logging into a device that was previously logged into
 by an extension moving locations (and attempting to log in at the same
 time as the other person) that the database could get out of sync. No
 locking has been performed here in order to keep the logic as clean
 and simple as possible. If there exists a strong possibility of people
 changing locations and logging in and out often on top of each other,
 then you may wish look into adding dialplan locking, which can be done
 using the LOCK() and UNLOCK() dialplan functions.

In more than one situation, the
 promise of hot-desking being just one more feature of the system is what
 eventually convinced a company to go with Asterisk because hot-desking
 was the killer application they were looking for.

See Also

Authenticating Callers, Counting and Conditionals, Looping in the Dialplan. Many of the concepts used in this
 dialplan stem directly from Chapter 10, “Deeper Into The Dialplan,” in
 Asterisk: The
 Definitive Guide (Expressions and Variable
 Manipulation, Dialplan Functions, Conditional Branching, GoSub, and
 Using the Asterisk Database).

[2] Although using an external database may actually have
 simplified the logic.

[3] Because the AstDB is based on the usage of a family/key
 relationship, we need two entries and to keep them synchronized.
 This is a good reason why using an external relational database
 could actually simplify the hot-desking logic.

Chapter 3. Audio Manipulation

Introduction

The recipes in this chapter are
 designed to help you with the injection of audio into and the monitoring
 of channels in your Asterisk environment. Many of the recipes focus on a
 particular aspect but can be built up or modified using the skills learned
 in other recipes in this book.

Monitoring and Barging into Live Calls

Problem

As the manager of a call
 center, you need to be able to listen in on calls to help with training
 new employees.

Solution

The most simple solution is to
 simply connect to any active channel using the ChanSpy() application, which then provides you
 the ability to flip through active channels using DTMF. The b option means to only listen to actively
 bridged calls:
[CallCenterTraining]
exten => 500,1,Verbose(2,Listening to live agents)
 same => n,ChanSpy(,b)
If you only want to spy on
 certain channels, you can use the chanprefix option to control which
 types of channels you want to listen to. So, if we just want to listen
 to SIP channels involved in bridged calls, we would do this:
[CallCenterTraining]
exten => 500,1,Verbose(2,Listening to live agents)
 same => n,ChanSpy(SIP,b)

Discussion

The default DTMF keys for
 controlling ChanSpy() are as
 follows:
	#
	Cycles through the
 volume level

	*
	Stop listening to the
 current channel and find another one to listen to

There are a lot more options
 for ChanSpy() and ways to use it in
 your dialplan. With some creativity, ChanSpy() can be used in many situations it
 wasn’t necessarily designed for (see Triggering Audio Playback into a Call Using DTMF). Not only can ChanSpy() be used to listen to the
 conversation between channels, but you can also speak to a single
 channel where only one person can hear you, referred to as
 whispering.
Whispering to a channel is
 commonplace in situations where a manager of a call center is training
 an employee, and needs to listen to an agent during the call. To enable
 whispering to channels that are being spied on, use the w option:
[CallCenterTraining]
exten => 500,1,Verbose(2,Listening to live agents with whisper)
 same => n,ChanSpy(,bw)
Of course, we’re going to be looking for some finer grain control
 for who we’re listening to. Perhaps we have several groups of people
 (multiple campaigns, different products, etc.) we want to separate and
 listen to. One of these groups could simply be the training group. New
 agents are all placed into the training group which makes it easy to
 scan and listen to calls while providing help where necessary. To do
 this, we need to associate channels with a spygroup using the SPYGROUP channel variable. By setting the
 channel variable for a particular channel, ChanSpy() can then be directed to listen only
 to channels in a particular spygroup.
As we show in Making Grandma Louder, we need to make sure the SPYGROUP channel variable is set on the
 channel we want to spy on and whisper to. In order to do this, we need
 to use the U() option of Dial(), which will execute a subroutine which
 sets the channel variable on the called channel verses the calling
 channel. While setting the SPYGROUP
 channel variable on the calling channel would still get us the ability
 to listen to calls like we want, the whispering would be performed to
 the wrong channel (i.e., the customer would be listening to the manager
 speak, not the agent):
[InboundCallsToAgents]
exten => 100,1,Goto(start,1)

exten => start,1,Verbose(2,Placing a call to an agent)
same => n,Dial(SIP/0000FFFF0001,15,U(subSetSpyGroup^training))
same => n,Hangup()

[subSetSpyGroup]
exten => s,1,Verbose(2,Setting spygroup)
same => n,Set(SPYGROUP=${ARG1})
same => n,Return()
We can make sure the channel variable SPYGROUP was set on the correct channel by
 using the core show channel CLI
 command at the Asterisk console. In our example, the device
 0000FFFF0004 placed a call to
 0000FFFF0001 using the dialplan we just wrote. By
 checking the channel variables set on the call, we can verify our
 dialplan is working correctly:
*CLI> core show channels
Channel Location State Application(Data)
SIP/0000FFFF0004-000 start@InboundCalls:2 Up Dial(SIP/0000FFFF0001,15,U(sub
SIP/0000FFFF0001-000 s@app_dial_gosub_vir Up AppDial((Outgoing Line))
2 active channels
1 active call
2 calls processed
Having verified the
 direction of the call (0000FFFF0004
 used the Dial() application which is
 connected to 0000FFFF0001), lets look
 at the channel variables set for the call:
*CLI> core show channel SIP/0000FFFF0004-TAB
...[snip]...
BRIDGEPVTCALLID=209ee58508fb319a0a2f615030316c28@172.16.0.161:5060
BRIDGEPEER=SIP/0000FFFF0001-00000001
DIALEDPEERNUMBER=0000FFFF0001
DIALEDPEERNAME=SIP/0000FFFF0001-00000001
DIALSTATUS=ANSWER
...[snip]...
We’ve snipped out a lot of
 text, but what we’re looking for is to make sure the calling channel
 doesn’t have the SPYGROUP set for it
 as we’re expecting it to be enabled on the channel being called (the
 agent). Using the same technique we can verify that:
*CLI> core show channel SIP/0000FFFF0001-TAB
...[snip]...
BRIDGEPVTCALLID=ODIxNTAyNGUyNWViZmM5NGIyOGY1ZTVjYTQ1N2ExNTI.
BRIDGEPEER=SIP/0000FFFF0004-00000000
GOSUB_RETVAL=
SPYGROUP=training
...[snip]...
Having verified our channel
 variable has been set on the correct channel, lets create the dialplan
 that will allow our manager to listen and whisper to the channels in the
 training group:
[CallCenterTraining]
exten => 500,1,Verbose(2,Listening to live agents)
 same => n,ChanSpy(SIP,bwg(training))
With minor modifications to
 our existing ChanSpy() code, we can
 now listen to only channels in the training group (option g(training)) and whisper to them (option
 w). This same technique could be
 applied to only listening to specified extensions or callers by placing
 only a single channel into the spygroup.
Some additional options
 which you may find useful include (to see all available options, use
 core show application ChanSpy
 from the Asterisk CLI):
	d
	Override the standard
 DTMF actions and instead use DTMF to switch between the following
 modes:
	4
	Spy mode

	5
	Whisper
 mode

	6
	Barge
 mode

	E
	Exit when the spied on
 channel is disconnected.

	q
	Quiet. Don’t play a
 beep or speak the channel being spied on prior to
 listening.

	S
	Stop when there are no
 more channels to spy on.

See Also

Triggering Audio Playback into a Call Using DTMF, Authenticating Callers, Authenticating Callers Using Voicemail Credentials, Authenticating Callers Using Read(), Making Grandma Louder

Growing Your Company With PITCH_SHIFT()

Problem

You want to appear as a larger
 company to the outside world by manipulating the pitch of audio when
 dialing certain extensions.

Solution

exten => 100,1,Verbose(2,${CALLERID(all)} is calling reception)
 same => n,Set(CALLERID(name)=RCP:${CALLERID(name)})
 same => n,Set(PITCH_SHIFT(tx)=high)
 same => n,Dial(SIP/0000FFFF0001,30)
 same => n,Voicemail(reception@company,u)
 same => n,Hangup()

exten => 200,1,Verbose(2,${CALLERID(all)} is calling sales)
 same => n,Set(CALLERID(name)=SLS:${CALLERID(name)})
 same => n,Set(PITCH_SHIFT(tx)=low)
 same => n,Dial(SIP/0000FFFF0001,30)
 same => n,Voicemail(sales@company,u)
 same => n,Hangup()

Discussion

Using PITCH_SHIFT() you can modify the transmitted
 and/or received audio pitch either up or down. By changing the pitch of
 audio, you can sound like different people of the company. In our
 example we’ve used the transmission modifier (tx) of PITCH_SHIFT() to raise the pitch of the
 transmitted voice when extension 100 is dialed. Similarly we’ve modified
 the transmitted pitch to be lower when dialing extension 200. In order
 to know which department is being called, we’ve modified the callerID
 name by prepending either RCP for
 reception or SLS for sales.
For both extensions we’ve
 dialed the same device within the company. However, depending on which
 extension was dialed, we’ve configured separate voicemail boxes. When
 setting up the voicemail greetings, you’ll need to modify the
 transmitted audio using PITCH_SHIFT()
 prior to calling VoicemailMain() so that your voice
 sounds the same across answered calls and the voicemail greeting.
PITCH_SHIFT() contains several shorthands for
 modifying pitch:
	highest
	Pitch is raised one full
 octave.

	higher
	Pitch is raised
 higher.

	high
	Pitch is raised.

	low
	Pitch is lowered.

	lower
	Pitch is lowered
 more.

	lowest
	Pitch is lowered one
 full octave.

In addition to the shorthands,
 you can pass the floating point number between 0.1 and 4.0. A value of 1.0 has no effect on the pitch. A number lower
 than 1.0 lowers the pitch and number
 greater than 1.0 will raise the
 pitch. This can provide some fine grained tuning of the pitch so that
 you don’t sound like a robot or Mickey Mouse (which simply has the
 effect of being funny, and also makes you difficult to
 understand).
Testing can be done either by
 dialing another extension at your desk, or making use of the Record() application and then listening to the
 audio recorded. With some fine tuning you can grow your company without
 hiring additional employees!

Injecting Audio into a Conference Bridge

Problem

You need to play an audio file
 into a conference room.

Solution

[ConferenceAudio]
; Users would join the conference at extension 100
exten => 100,1,Goto(start,1)

; Trigger audio playback with extension 200
exten => 200,1,Originate(Local/inject@ConferenceAudio/n,exten,
ConferenceAudio,quiet_join,1)

; Users join the conference here
exten => start,1,NoOp()
 same => n,Answer()
 same => n,MeetMe(31337,d)
 same => n,Hangup()

; Use a couple flags to quietly enter the conference
exten => quiet_join,1,NoOp()
 same => n,Answer()
 same => n,MeetMe(31337,dtq)

; This triggers the file to be played into the conference
exten => inject,1,NoOp()
 same => n,Playback(silence/1&tt-weasels)
 same => n,Hangup()

Discussion

Playing audio into a
 conference is really quite a straightforward process. While there are
 several ways of triggering the audio playback through a call origination
 process (as shown in the See Also section) we’ve utilized the dialplan
 origination method for our example. Using the Originate() application, we’ve used a
 Local channel that plays back an audio file and
 connected it to the conference bridge using MeetMe() by connecting via a dialplan
 extension[4]. When we dial extension 200, the Originate() application creates a
 Local channel that executes the inject extension in the ConferenceAudio context. Once the
 Local channel is created, it is connected to the
 quiet_join extension located in the
 ConferenceAudio context which then
 connects to the MeetMe() application.
Once all these pieces are
 connected together, the audio is played into the conference bridge.
 We’ve set 3 flags on MeetMe() within
 the quiet_join extension. They are as
 follows:
	d
	Dynamically create the
 conference (don’t use meetme.conf).

	t
	Talk-only—don’t listen
 to audio. Not necessary, but could save on resources.

	q
	Quiet join—don’t play
 join sounds when connecting to the conference (suppresses the
 beep audio file).

Our example is a barebones
 implementation, but with further development, this could be expanded to
 limit conference lengths with audio being injected periodically to let
 the participants know how long is left. Or for weekly meetings, agenda
 items could be injected into the conference to make sure things progress
 during the allocated meeting time much like is done on shows like Pardon
 The Interruption.

See Also

Triggering Audio Playback into a Call Using DTMF, Originating a Call From a Call File, Originating a Call Using the Dialplan,
 Originating a Call From the Manager Interface, Making Grandma Louder

[4] We could have just as easily used
 ConfBridge() as well. It just depends on your
 requirements.

Triggering Audio Playback into a Call Using DTMF

Problem

During a call you want to play
 back audio to a caller when they send a particular sequence of DTMF
 tones.

Solution

First we start with the
 creation of a new applicationmap:
; features.conf
[applicationmap]
play_message => #1,self/caller,Macro(PlayMessage)
Then we create our Macro() for
 triggering the message injection in extensions.conf:
[macro-PlayMessage]
exten => s,1,NoOp()
 same => n,Set(EncodedChannelToPass=${URIENCODE(${DYNAMIC_PEERNAME})})
 same => n,Originate(Local/spy-${EncodedChannelToPass}@whisper-channel/n,
exten,whisper-channel,audio,1)
Our Macro() calls via a Local
 channel another context which does the audio injection:
[whisper-channel]
exten => _spy-.,1,NoOp()
 same => n,Set(EncodedChannel=${CUT(EXTEN,-,2-3)})
 same => n,Set(GROUP(whisper-channel)=${EncodedChannel})
 same => n,ExecIf($[${GROUP_COUNT(${EncodedChannel}@
whisper-channel)} > 1]?Hangup())
 same => n,Set(ChannelToSpy=${URIDECODE(${EncodedChannel})})
 same => n,ChanSpy(${ChannelToSpy},wsqEB)
 same => n,Hangup()

exten => audio,1,NoOp()
 same => n,Answer()
 same => n,Wait(0.4)
 same => n,Set(VOLUME(TX)=-4)

; One example is to return current cost of the call. A lookup to a database or
; webservice would be required to make the data dynamic.
;
 same => n,SayNumber(7)
; letters/dollar vs. digits/dollars (plural)
 same => n,Playback(digits/dollars)
 same => n,SayNumber(48)
 same => n,Playback(cents)
 same => n,Hangup()
And then to enable it we need
 to add the following line into the dialplan that is executed by the
 channel that will be triggering the audio playback:
exten => _2XX,1,NoOp()
 same => n,Set(DYNAMIC_FEATURES=play_message)
 same => n,Dial(SIP/${EXTEN},30)
...

Discussion

In this solution we’ve
 developed a system using the features.conf file to trigger playback of
 audio via DTMF[5] to a channel without disconnecting the existing call.
 We’ve configured the feature called play_message (which could be any name not
 already in use), and assigned the #1
 DTMF key combination to be the trigger. The option defined as self/caller means that the channel placing the
 call will be the one able to trigger the playback, and will also be the
 channel that hears the audio that is injected into the call. This is all
 done via the PlayMessage macro we’ll
 be defining in the dialplan.
In the macro-PlayMessage context, we’ve assigned the
 name of the channel we’ll be injecting audio to the EncodedChannelToPass channel variable. The
 channel name is obtained from the DYNAMIC_PEERNAME channel variable which was
 set when the play_message feature was
 trigged via the #1 DTMF sequence.
 We’ve used the URIENCODE() dialplan
 function to make it easier to pass the value of the channel using the
 Local channel inside the Originate() application. URIENCODE() is required as there will be
 front-slash (/) in the channel name,
 which would break the format expected by the Originate() command.
The Originate() application is used to trigger
 dialplan for playing back the audio prompt. The values for where to play
 the audio are passed via the spy-<channel
 name> extension in the whisper-channel context. The value passed to
 us through the extension was URIENCODE()’d, so we need to decode it. The
 value passed to URIENCODE() comes
 from the CUT() function, which takes
 the extension and separates on the hyphen, only passing the second and
 third fields, and assigning them to the ChannelToSpy variable. We are essentially
 cutting off the “spy-” part of the extension, as it contains no useful
 information. The rest of the extension is the channel name we need to
 spy on, as passed to us from the Originate() command in the PlayMessage macro.
Using the ChannelToSpy channel variable, we then inject
 audio into the channel using the ChanSpy() application to whisper to the
 channel. Here we look back at the Originate() line which had a
 Local channel passed to it as one of the values, with
 the remaining values being exten,
 whisper-channel, audio, and 1. The remaining values are telling the
 Originate() command to connect the
 Local channel with the extension audio within the whisper-channel context, starting at the first
 priority. The audio extension is what will contain the
 instructions for what audio to be played into the channel.
The flags passed to the
 ChanSpy() application are as
 follows:
	w
	Whisper to the channel
 (allow us to listen and speak)

	s
	Silent; don’t play the
 beep

	q
	Quiet; don’t play the
 channel type

	E
	Exit after the bridge is
 closed

	B
	Barge in

Once the Originate() application has connected the
 ChanSpy() application to the
 requested channel, then we need to play back some audio. The audio to be
 played into the channel is handled via the audio extension within the whisper-channel context. Because we want to
 play the audio over the top to give the caller some information, but
 don’t want to interrupt the call, we’ve lowered the volume of the audio
 using the VOLUME() function prior to
 playing any audio.
We’ve defined some static data
 as an example of what audio playback might be like. Of course, you’d
 need to add a call above that to make the data dynamic, which could be
 done via func_odbc (if the data was
 in a relational database), via CURL()
 (if returned from a webservice), or any other number of ways in which
 the data could be looked up and returned.

See Also

Injecting Audio into a Conference Bridge, Making Grandma Louder, Monitoring and Barging into Live Calls

[5] Dual-Tone Multi-Frequency, aka Touch-Tone.

Recording Calls from the Dialplan

Problem

You would like to enable call
 recording from the Asterisk dialplan.

Solution

Use the MixMonitor() application:
exten => 7001,1,MixMonitor(${UNIQUEID}.ulaw)
 same => n,Dial(SIP/myphone)

Discussion

MixMonitor() records the audio from both
 directions of the phone call and writes it to a file on disk in one of
 the audio formats that Asterisk supports. You can see a list of the file
 formats that your version of Asterisk supports at the Asterisk CLI. The
 Extensions
 column identifies which file format extensions can be used in the
 recording filename:
*CLI> core show file formats

Format Name Extensions
------ ---- ----------
gsm wav49 WAV|wav49
slin16 wav16 wav16
slin wav wav
adpcm vox vox
slin16 sln16 sln16
slin sln sln|raw
siren7 siren7 siren7
siren14 siren14 siren14
g722 g722 g722
ulaw au au
alaw alaw alaw|al|alw
ulaw pcm pcm|ulaw|ul|mu|ulw
ilbc iLBC ilbc
h264 h264 h264
h263 h263 h263
gsm gsm gsm
g729 g729 g729
g726 g726-16 g726-16
g726 g726-24 g726-24
g726 g726-32 g726-32
g726 g726-40 g726-40
g723 g723sf g723|g723sf
g719 g719 g719
23 file formats registered.

The syntax for MixMonitor() in the dialplan is as
 follows:
MixMonitor(filename.extension[,options[,command]])
The options string can contain any of the
 following options:
	a
	If the specified
 filename already exists, append to it instead of overwriting
 it.

	b
	Delay the start of the
 recording until the call has been bridged. Otherwise the recording
 will start during call setup. If you only want to record the parts
 of the call once both sides have been answered and are talking,
 use this option.

	v(x)
	Adjust the volume of
 the audio heard by the channel that is executing MixMonitor(). The range is -4 to 4.

	V(x)
	Adjust the volume of
 the audio spoken by the channel that is executing MixMonitor(). The range is -4 to 4.

	W(x)
	Adjust the audio
 coming from both directions. The range is -4 to 4.

The final parameter for
 MixMonitor() is a command. This is a custom command that will be
 executed when the recording is complete. This can be useful for doing
 post-processing of
 recordings.

See Also

See Triggering Call Recording Using DTMF for another recipe that is
 related to call recording. To see the built-in documentation that
 Asterisk has for MixMonitor(),
 execute this command at the Asterisk CLI:
*CLI> core show application MixMonitor

Triggering Call Recording Using DTMF

Problem

You would like to give some
 users the ability to enable call recording by pressing a key sequence
 during a call.

Solution

Use the automixmon feature. This feature is built into
 Asterisk. You just have to enable it in a couple of configuration files.
 First, set the automixmon option in
 features.conf to the key sequence you
 would like to use for enabling or disabling recording:
[featuremap]
automixmon = *3
Now that the key sequence
 has been set, you must modify extensions.conf to allow callers to use this
 feature. This is done by setting the x and/or X
 options in the Dial() or Queue() application:
	x
	Give the called party
 the ability to toggle call recording using the automixmon feature.

	X
	Give the calling party
 the ability to toggle call recording using the automixmon feature:

;
; When someone calls my extension, dial my phone and give
; me the ability to enable recording on the fly.
;
exten => 7001,1,Dial(SIP/myphone,30,x)

Discussion

The featuremap section of features.conf has some other features that
 are configured and enabled in this same manner. You configure the key
 sequence for the feature in features.conf and then enable the feature on
 a per-call basis using arguments to the Dial() or Queue() applications. Here is a list of all of
 the features in the featuremap
 section:
	blindxfer
	DTMF triggered blind
 transfers. Enable it using the t and/or T options to Dial() or Queue().

	atxfer
	DTMF triggered
 attended transfers. Enable it using the t and/or T options to Dial() or Queue().

	disconnect
	DTMF triggered call
 hangup. Enable it using the h
 and/or H options to Dial() or Queue().

	parkcall
	DTMF triggered call
 parking. Enable it using the k
 and/or K options to Dial() or Queue().

	automixmon
	DTMF triggered call
 recording using the MixMonitor() application. Enable it
 using the x and/or X options to Dial() or Queue().

	automon
	DTMF triggered call
 recording using the Monitor()
 application. We recommend using the automixmon feature instead of this one
 unless you have a specific need for using Monitor() instead of MixMonitor(). Enable this feature by
 specifying the w and/or
 W options to Dial() or Queue().

See Also

For another recipe that uses
 MixMonitor(), see Recording Calls from the Dialplan.

Making Grandma Louder

Problem

You have a particular caller
 who is soft spoken, and need to increase the volume of her
 speech.

Solution

[VolumeAdjustment]
exten => 100,1,Verbose(2,Incoming call from ${CALLERID(all)})
 same => n,GoSubIf($[${CALLERID(num)} = 12565551111]?VolumeAdj,1)
 same => n,Dial(SIP/0000FFFF0001,30)
 same => n,Hangup()

exten => VolumeAdj,1,Verbose(2,Adjusting volume for grandma)
 same => n,Set(VOLUME(TX)=3)
 same => n,Return()

Discussion

In our solution, we’ve used
 the CALLERID() function to match on a
 particular callerID number and, if matching, to execute the VolumeAdj extension which increases the
 receive volume. We’re making use of a GoSubIf() to execute the VolumeAdj extension and to return when the
 volume adjustment is completed, and then dialing the device 0000FFFF0001. We could then create a list of
 callerID numbers to adjust the volume for if we wished. Because we’re
 expecting the other side to be quieter than we would like, we are
 increasing the volume of the transmitted audio by specifying VOLUME(TX). If we wanted to increase the
 volume for the audio received by that channel, we would use VOLUME(RX).
Note
The VOLUME() function must be viewed from the
 aspect of the channel that is executing the function. Because there
 are two channels in every call, if the channel initiating the Dial() application executed the VOLUME() function, then
 the RX option adjusts their receive
 volume, and TX adjusts their
 transmit volume.

In addition to changing the
 volume prior to calling an application, with the p option we can permit the VOLUME() function to listen for DTMF to adjust
 the volume of the channel. To increase volume, use the * key. To lower the volume, use the # key. With our current dialplan, the DTMF can
 be adjusted by the caller, which may not necessarily be what we want. If
 we want the VOLUME() to be adjustable
 on the called channel, we need to execute a subroutine on the other
 channel just prior to bridging. We can do this with the U() option to the Dial() application:
exten => 100,1,Verbose(2,Incoming call from ${CALLERID(all)})
same => n,Dial(SIP/0000FFFF0001,30,U(VolumeAdjustment^3))
same => n,Hangup()

exten => s,1,Verbose(2,Adjusting volume for other channel)
same => n,Set(VOLUME(RX,p)=${ARG1})
same => n,Return()

Tip
We could use the IF() function to control whether the
 subroutine is executed by the Dial() application:
 same => n,Dial(SIP/0000FFFF0001,30,${IF($[${CALLERID(num) = 12565551212]?
U(VolumeAdjustment^3))})

The nice thing about adjusting the volume with the VOLUME() function is that you can apply this
 not just to dialing end points, but also to adjust volume prior to
 sending calls to other applications which may be recording audio, such
 as Voicemail() or Record(). In this manner, you can adjust the
 volume for people individually but continue utilizing the same dialplan
 logic.
If you had a large list of
 people with different volumes you needed to adjust, then making use of
 the AstDB or func_odbc methods of looking up
 information in a database would be the better way to go. By making the
 data dynamic, you can handle tens or hundreds of different volume
 configurations without much more dialplan. If using func_obdc and a custom function, the dialplan
 may look something like the following:
[VolumeAdjustment]
exten => 100,1,Verbose(2,Incoming call from ${CALLERID(all)})
 same => n,Set(ARRAY(VolLevel,VolDirection)=
${ODBC_GET_VOLUME_LEVEL(${CALLERID(num)})})
 same => n,GoSubIf($[${EXISTS(${VolumeLevel})}]?VolumeAdj,1)
 same => n,Dial(SIP/0000FFFF0001,30)
 same => n,Hangup()

exten => VolumeAdj,1,Verbose(2,Adjusting volume for grandma)
 same => n,Set(VOLUME(${VolDirection})=${VolLevel})
 same => n,Return()
Once you start abstracting
 the data with things like func_odbc then you can
 even control volume based on who is being called (perhaps someone has
 impaired hearing and requires the volume to be adjusted) and all sorts
 of other situations.

About the Authors
Leif Madsen first got involved with the Asterisk community when he was looking for a voice conferencing solution. Once he learned that there was no official Asterisk documentation, he co-founded the Asterisk Documentation Project. Leif is currently working as a consultant, specializing in Asterisk clustering and call-center integration. You can get more information at http://www.leifmadsen.com.
Russell Bryant is the Engineering Manager for the Open Source Software team at Digium, Inc. He has been a core member of the Asterisk development team since the Fall of 2004. At the first AstriCon in 2004, he was named the release maintainer for Asterisk's first major release series, Asterisk 1.0. He has since contributed to almost all areas of Asterisk development, from project management to core architectural design and development.

OEBPS/httpatomoreillycomsourceoreillyimages810300.png

OEBPS/httpatomoreillycomsourceoreillyimages810295.jpg

OEBPS/oreilly_large.gif

