

Data/IP over Satellite Communications

Objectives of today's presentation

To provide an introduction to the technology & terminology associated with computer networking via commercial satellite communications systems by:

- · Giving an overview of BT's involvement
- Showing how data transmission methods have evolved over 35 years
- Describing current example services to show how network designers cope with issues facing the use of Internet Protocol (IP) over a geostationary satellite communications link.
- Near-term developments
- Common abbreviations

Data/IP over Satellite Communications Scope of the presentation

- An overview of commercial satellite communications systems
- A brief history of data communications via satellite
- Data communications terminology (ISO 7-layer model etc)
- IP via Satellite; issues for TCP/IP
- Solutions for TCP/IP via satellite
- Some example systems of Broadband via Satellite:
 - DVB-based
- New technology trends
- Terminology (throughout)

Technology & Service Development

BT wholesale

Brief History of Satcomms - 1964 to 1965

1964 - Syncom-3 (NASA) -first to reach the Geostationary Orbit

(used for Tokyo Olympics)

1964 - INTELSAT: an interim organisation for INTernational

TELecommunication SATellites

1965 - Early Bird (INTELSAT - I): the first commercial satellite to operate in the

Geostationary Orbit

Diameter 0.7 m Height 0.59 m Weight 39 kg Solar Power Input 33 W

Technology & Service Development

Brief History of Satcomms - 1997 to 2000

1997 - Feb: INTELSAT-VIII

1997 - May: 1st Iridium launch (5 x LEOs - Low Earth Orbit spacecraft)
1998 - Iridium gets 66 active LEOs working
1999 - May: EUTELSAT-W3 @ 7°E (3rd generation FSS spacecraft)
1999 - Sept.: Globalstar reaches 40 x LEOs (competition for Iridium)
March 2000 - Iridium ceases as a business...temporarily (bad press for satcomms)

Terminology - Decibel

- Decibel (dB): logarithmic measure of power gain or loss
- Power gain in dB = 10*log(Output power/input power)
- 10 dB = factor of 10
- 20 dB = factor of 100
- 30 dB = factor of 1000
- 60 dB = factor of 1000000
- 200 dB = factor of 100000000000000000000
- -10 dB = factor of 1/10 (i.e. 'loss')
- 3 dB = factor of 2
- 6 dB = factor of __??

Terminology - Antennas

- Antennas
- Not aerials or antennae!!

Technology & Service Development

- Satellites remain in orbit owing to a delicate balance of two forces:
 - the gravitational attraction of the earth
 - the centrifugal acceleration of the satellite's motion around the earth
- Types of earth-centred orbit:
 - Low Earth Orbit (LEO): 200 1000 km; moderately low inclination angle to the equatorial plane
 - Medium-altitude Earth Orbit (MEO): c. 10,000 km; 45 to 60° inclination
 - Polar Orbit (PO): as LEO but over the earth's poles
 - Highly Elliptical Orbit (HEO): come near to Earth at closest approach ("perigee") and very far away on opposite side ("apogee")
 - Molniya orbit: special type of HEO with apogee located at maximum latitude
 - Geostationary Earth Orbit (GEO): zero inclination; 24-hour cycle
 - Geostationary Transfer Orbit (GTO): eccentric orbit designed to position a satellite for efficient placement into GEO

Satellites in Geo-Stationary Orbit

Supplier	No of main	Typical locations
	s/ c	(°E)
INTELSAT	26	33, 60-66, 174-183, 304-310,
		325-335, 342, 359
EUTELSAT	23	7, 10, 13, 16, 21.5, 25.5, 28.5, 36, 48,
		70.5, 76, 345, 347.5, 349, 352, 355
INMARSAT	5	24, 63/ 65, 178/ 179, 305/ 306,
		343/ 345
PANAMSAT	22	26, 68-72, 166-169, 227-237, 261-
		269,286,302,315, 317
SES/ ASTRA	13	5.2, 19.2, 23.5, 24.2, 28.2
ORION	2	322.5, 345
New Skies	6	57, 95, 183, 319.5, 338, 340
Others	>200	Around the GEO

Highly congested!! Earth station antennas can't resolve better than 2-3°

Technology & Service Development

BT wholesale

Data/IP over Satellite Communications A Brief History of Data Communications via Satellite

- Theoretical bandwidth = symbol rate (the 'Nyquist bandwidth')
- Practical b/w = (typically) 1.4 * symbol rate (to avoid excessive adjacent channel interference
- Quadrature (or quaternary)(Q) PSK (2 bits/symbol) is still the most frequentlyused for satcomms, even after >35 years, but more advanced modulation schemes are becoming popular; e.g.:
 - Octal, or 8 PSK has 3 bits/symbol (2Mbit/s carrier = 666kHz b/w).
 - 16-QAM (quadrature amplitude modulation) has 4 bits/symbol (2Mbit/s carrier = 500kHz b/w).
- So where is the catch?
- Unlike terrestrial radio systems, satcomm systems have to work with very low signal-to-noise ratios and the more advanced the modulation scheme, the higher the SNR required for a given transmission performance

- Television (TV) carriers (Occasional Use and Leased):
 - TV/FM (uses Frequency Modulation) now replaced by digital TV
 - Digital TV (uses QPSK on an MPEG-2 encoded signal; often referred to as the
 - DVB-S standard for 'digital video broadcast satellite')
- VSAT carriers for Business and Corporate Networks:
 - Majority of terminals (e.g. at branch offices, hence also called 'remotes') use a 'Very Small Aperture Terminal (VSAT), meaning a small dish antenna (up to 2.4 m) and relatively small associated equipment.
 - The otherwise inefficient use of space-segment is compensated for by working to a large 'hub' terminal or station (e.g. at or close to the Corporate HQ).
- Internet Service Provider (ISP) carriers:
 - Typically using QPSK or TCM (possibly 16QAM) to provide connectivity as part of the Internet Backbone
 - Normally 'asymmetric' i.e. higher bit-rate on the half-circuit outgoing from the end that holds the highest proportion of information (for browsing)

OSI 7-layer Model (1)

- OSI = Open Systems Interconnection:
 - → Defined by International Standards Organisation (ISO)
- Provides:
 - Common terminology
 - → Framework for networking
- Revolutionary when first introduced & is in widespread use today
- Crucial to gaining an understanding of computer networking:
 - → Part of the language (e.g. 'Layer-3 protocol', 'Layer-4 switches')
 - Divides the functions needed to xfer data between machines across a network into separate independent layers, each with its own set of responsibilities.
- This separation, along with packet switching, made the Internet possible

OSI 7-layer Model (2)

Layer Number	Layer Name	Layer Description and Services
7	Application	Network services support for email, file transfer etc
6	Presentation	Data representation - formatting, encryption and compression
5	Session	Dialog Control - set-up and management of end-to-end calls
4	Transport	End-to-end Data Integrity - message transmission
3	Network	Transmission of Packets - Internet addressing & routing
2	Link	Package of bits into frames for delivery
1	Physical	Physical transmission of data
1	Titysteat	

Technology & Service Development

- TCP/IP has two possible transport layer protocols:
 - Transmission Control Protocol ('TCP') for reliable communications (network level service for reliable stream delivery - nothing must be lost)
 - → User Datagram Protocol (UDP) for 'best effort transmission' (network level service for unreliable stream delivery – e.g. real-time voice & video)
- TCP/IP is the 'language of the Internet':
 - → The 'de-facto' standard set of protocols for computer networking
 - → All other protocols are considered 'legacy protocols'
 - → Available as a standard component of all operating systems
 - → Comprised of: TCP, UDP, IP, routing, utilities & networking applications
 - → Specified by the Internet Engineering Task Force (IETF)

- Each protocol has its own header; the rest of the packet is 'payload'
- Thus the packet of each protocol (containing header & payload) becomes the payload of the protocol for the next layer down e.g.:
 - → A TCP segment, including TCP header & data, fits into the payload of an IP datagram
 - → The IP datagram, including the IP header and payload, fits inside the Ethernet frame.

etwork Lave	er		
	7 Application		
(5 Presentation	File Transfer Telnet	
4	5 Session		
2	Transport	TCP, UDP	
	3 Network	IP	
	2 Link	X25, ATM, LAN	
-	Physical	Coax, Fibre, etc	

Technology & Service Development

IP Access Using RO-VSAT

- Hughes DirecPC
 - · Offers users satellite delivery from ISP with terrestrial dial-up
 - · Uses proprietary data link layer protocol
- Many RO-VSAT Internet offerings now sit on a DVB platform
 - · cheap receiver
 - · multi-media capabilities
 - · worth DVB overhead penalty
- DVB = Digital Video Broadcast (as used for digital TV)

Astra-Broadband Interactive

Two-way domestic satellite terminal

Satellite Interactive Terminal (SIT) transmits at Ka band

DVB-RCS using MC-TDMA on up-link

remote site up-link rates 144kbps to 2Mbps

SIT receives at Ku-band

DVB multiplex at 38Mbps

Bandwidth on demand

Active now on Astra 1H at 19.2°E

<section-header><section-header><section-header><text><text><text><text><text><text><text>

- An overview of commercial satellite communications systems
- A brief history of data communications via satellite
- Data communications terminology (ISO 7-layer model etc)
- IP via Satellite; issues for TCP/IP
- Solutions for TCP/IP via satellite
- Some example systems of Broadband via Satellite:
 - DVB-based
- New technology trends
- Terminology (throughout)

Earth Station Layout - Goonhilly

Technology & Service Development

List of Abbreviations

ACSE	Access, Control & Signalling Equipment	HEO	Highly Elliptical Orbit	PID	Packet Identifier
AM	Amplitude Modulation	HPA	High Power Amplifier	PSK	Phase Shift Keying
ASI	Asynchronous Serial Interface	IBS	INTELSAT Business Services	QAM	Quadrature Amplitude Modulation
ATM	Asynchronous Transfer Mode	IDD	International Direct Dialling	QPSK.	Quadrature PSK
BPSK	Binary PSK	IDR	Intermediate Data Rate (carrier)	RAS	Registration Admission Status
BSS	Broadcast Satellite Service	IETF	Internet Engineering Task Force	RCS	Return Channel (via) Satellite
BUC	Block Up Converter	IF	Intermediate Frequency	RC&M	Remote Control & Monitoring
CRD	Client's Requirements Definition	IOT	In Orbit Test	RF	Radio Frequency
C/N	Carrier-to-Noise (power) ratio	IP	Internet Protocol	RFI	RF Interference
DAMA	Demand Assigned Multiple Access	IPC	International Private Circuit	RoF	Radio-over-Fibre
dBm	10xLog (base10) power relative to 1mW	IRD	Integrated Receiver Decoder	RTD	Round Trip Delay
dBW	10xLog (base10) power relative to 1W	ISDN	Integrated Services Digital Network	SCPC	Single Channel Per Carrier
DBS	Direct Broadcast Satellite	ISO	International Standardisation Organisation	SHF	Super High Frequency
DTH	Direct to Home	ISP	Internet Service Provider (carrier)	SMS	Satellite Multi-Services
DVB	Digital Video Broadcast	KPA	Klystron Power Amplifier	SOR	Statement of Requirements
E2e	End-to-end	LAN	Local Area Network	SSOG	Satellite System Operations Guide
EIRP	Effective Isotropic Radiated Power	LEO	Low Earth Orbit	SSPA	Solid State Power Amplifier
ESVA	Earth station Verification & Assistance	LNA	Low Noise Amplifier	TCM	Trellis Coded Modulation
FDM	Frequency Division Multiplex	LNB	Low Noise Block	TCP	Transmission Control Protocol
FDMA	Frequency Division Multiple Access	LNC	Low Noise Converter	TDMA	Time Division Multiple Access
FEC	Forward Error Correction	MEO	Medium Earth Orbit	TES	Transportable Earth Station
FM	Frequency Modulation	MF	Multi-frequency	TT&C	Telecommand, Tracking & Control
FMT	Fade Mitigation Techniques	MPEG	Moving Pictures Experts Group	TVOB	TV Outside Broadcast
FSS	Fixed Satellite Service	MPE	Multi Protocol Encapsulation	TVRO	TV Receive-only
FTP	File Transfer Protocol	MPLS	Multi Protocol Label Switching	TWTA	Travelling Wave Tube Amplifier
GEO	Geostationary Earth Orbit	NGSO	Non-Geo-Stationary Orbit	UDP	User Datagram Protocol
GHz	Giga-Hertz (1 billion cycles/sec)	NSS	NewSkies Satellites	U(P)PC	Uplink (or Up-Path) Power Control
GSO	GeoStationary Orbit	NTSC	USA colour TV system	UPS	Uninterruptible Power Supply
GTO	Geostationary Transfer Orbit	OSI	Open Systems Interconnection	VSAT	Very Small Aperture Terminal
G/T	Gain-over-Temperature	PAL	UK colour TV system	WAN	Wide Area Network
HDLC	High level Data Link Control	Pol	Polarisation		

Technology & Service Development

BT wholesale

End of Presentation