Satellite Communications

Marc Van Droogenbroeck

Department of Electrical Engineering and Computer Science University of Liège

November 2012

Outline

Signal processing elements

- What do we transmit? Information!
- Source coding
- Modulation
- Multiplexing
- Propagation and radio communications
 - Background
 - Radiowave propagation
 - Examples of antennas

3 Engineering

- Noise
- Link budget

What do we transmit? Information! Source coding Modulation Multiplexing

Outline

Signal processing elements

- What do we transmit? Information!
- Source coding
- Modulation
- Multiplexing
- Propagation and radio communications
 - Background
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget

What do we transmit? Information! Source coding Modulation Multiplexing

Main types of satellite

- Astronomical satellites: used for observation of distant planets, galaxies, and other outer space objects.
- Navigational satellites [GPS, Galileo]: they use radio time signals transmitted to enable mobile receivers on the ground to determine their exact location.
- *Earth observation satellites:* used for environmental monitoring, meteorology, map making.
- *Miniaturized satellites*: satellites of unusually low masses and small sizes.
- Communications satellites: stationed in space for the purpose of telecommunications. Modern communications satellites typically use geosynchronous orbits, or Low Earth orbits (LEO).

What do we transmit? Information! Source coding Modulation Multiplexing

Analog and digital signals

Analog information signal

Analog representation

Digital information signal

< 口 > < 同

Digital representation

< ∃ >

Analog signal	Digital signal		
Bandwidth [Hz]	Bit rate [bit/s]		
Signal to Noise ratio (S/N)	Bit error rate (BER)		
Bandwidth of the underlying channel [Hz]			

Going digital because:

- possibility to regenerate a digital signal
- better bandwidth usage
 - analog PAL television signal: bandwidth of 8[MHz]
 - digital television, PAL quality $\sim 5 \left[Mb/s \right]$
 - With a 64-QAM modulation, whose spectral efficiency is 6 *b/s* per *Hz*. 8[*MHz*] allows for 48[*Mb/s*].
 - Therefore, there is room for 10 digital television instead of one analog channel.

Types of data	Characteristics
Control data	Must be very reliable
Measurements	Accurate signals with constant monitoring
Remote sensing	High volume of downstream data
Localization data	Accurate time reference (synchronization)
Broadcasting	Television channels
Payload	Unicast communication for mobile ground station

(中) (문) (문) (문) (문)

Data encapsulation: OSI model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● のへで

Elements of a communication channel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

What do we transmit? Information! Source coding Modulation Multiplexing

Outline

Signal processing elements

• What do we transmit? Information!

Source coding

- Modulation
- Multiplexing
- Propagation and radio communications
 - Background
 - Radiowave propagation
 - Examples of antennas

3 Engineering

- Noise
- Link budget

Theorem

[**Shannon**] The capacity of an Additive White Gaussian Noise (AWGN) channel is

$$C = W \log_2\left(1 + \frac{S}{N}\right) \tag{1}$$

where W is the bandwidth occupied by the signal, S is the signal power and $N = WN_0$ is the Gaussian noise variance.

Let R be the bit rate and E_b the energy per bit (in joules), we have $S = E_b R$, and

$$C = W \log_2 \left(1 + \frac{E_b}{N_0} \frac{R}{W} \right) \tag{2}$$

The ratio $\frac{R}{W}$ is the spectral efficiency expressed in [b/s] per [Hz].

Bit/packet error rate

Assume a packet of size N and let P_e be the probability error on one bit.

The probability for the packet to be correct is

$$(1-P_e)^N \tag{3}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Therefore the *packet error rate* is

$$P_P = 1 - (1 - P_e)^N \tag{4}$$

For large packets and small P_e , this becomes

$$P_P \simeq 1 - (1 - NP_e) = N \times P_e \tag{5}$$

Example

With $N = 10^5$ bits and a bit error rate of $P_e = 10^{-7}$, $P_P \simeq 10^{-2}$.

Forward Error Coding

A simplistic example of Forward Error Coding (FEC) is to transmit each data bit 3 times, known as a (3,1) repetition code.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Other forward error codes

- Hamming code
- Reed–Solomon code
- Turbo code, ...

What do we transmit? Information! Source coding Modulation Multiplexing

Outline

Signal processing elements

- What do we transmit? Information!
- Source coding

Modulation

- Multiplexing
- Propagation and radio communications
 - Background
 - Radiowave propagation
 - Examples of antennas

3 Engineering

- Noise
- Link budget

Signal processing elements Propagation and radio communications Engineering Modulation Multiplexing

Modulation

A cosine $cos(2\pi f_c t)$ is the carrier. s(t) is the modulated signal

$$s(t) = A(t)\cos(2\pi f(t)t + \phi(t))$$
(6)

イロト イポト イヨト イヨト

• A(t): Amplitude Modulation (AM)

• f(t): Frequency Modulation (FM)

• $\phi(t)$: Phase Modulation (PM)

Demodulation

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 ●のへの

Basic digital modulation techniques

also called ASK, (amplitude-

binary signal is used to switch carrier on and off

FSK -Frequency Shift Keying

binary signal used to FM the carrier, f1 for a binary 1, f2 for a

BPSK -Binary Phase Shift Keying

polarity changes in binary signal used to produce 180° carrier phase

< □ > < □ > < □ > < □ > < □ > < □ >

Quadrature modulation

It is possible to use both a cosine and a sine with a unique bandwidth.

$$s(t) = s_I(t)\cos(2\pi f_c t) - s_Q(t)\sin(2\pi f_c t)$$
(7)

Quadrature demodulation

 $s(t) = s_I(t)\cos(2\pi f_c t) - s_Q(t)\sin(2\pi f_c t)$ is the modulated signal. We want to recover $s_I(t)$

• Step 1: multiply by $\cos(2\pi f_c t)$

$$s(t) \times \cos(2\pi f_c t) = s_I(t) \cos^2(2\pi f_c t) - s_Q(t) \sin(2\pi f_c t) \cos(2\pi f_c t)$$

= $\frac{1}{2} s_I(t) + \frac{1}{2} s_I(t) \cos(2\pi (2f_c)t) - \frac{1}{2} s_Q(t) \sin(2\pi (2f_c)t)$

• Step 2: filter to keep the baseband signal

$$\frac{1}{2}s_l(t)$$

• Steps 3 and 4: multiply by $sin(2\pi f_c t)$ and low-pass filter to get $s_Q(t)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

What do we transmit? Information! Source coding Modulation Multiplexing

Outline

Signal processing elements

- What do we transmit? Information!
- Source coding
- Modulation

Multiplexing

- Propagation and radio communications
 - Background
 - Radiowave propagation
 - Examples of antennas

3 Engineering

- Noise
- Link budget

Signal processing elements Propagation and radio communications Engineering What do we transmit? Information! Source coding Modulation Multiplexing

Multiplexing: combining several sources

- Frequency Division Multiplexing (FDM)
- Time Division Multiplexing (TDM)
- Code Division Multiplexing (CDM)
- Space Division Multiplexing
- + combinations !

< 1 →

Frequency Division Multiplexing (FDM)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ のへで

Demultiplexing

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

What do we transmit? Information! Source coding Modulation Multiplexing

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Time Division Multiplexing (TDM)

Spread spectrum for Code Division Mulplexing

Principle of spread spectrum: multiply a digital signal with a faster pseudo-random sequence.

At the receiver, the pseudo-random sequence is generated and used to despread the signal.

Code Division Multiple Access

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Background Radiowave propagation Examples of antennas

Outline

Signal processing elements

- What do we transmit? Information!
- Source coding
- Modulation
- Multiplexing

Propagation and radio communications

Background

- Radiowave propagation
- Examples of antennas

3 Engineering

- Noise
- Link budget

Background Radiowave propagation Examples of antennas

Satellite link definition

Frequency (GHz)

But it is better to designate the carrier frequency directly

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ◆○◆

Regulatory bodies

- International Telecommunications Union (ITU): Radiocommunications Sector (ITU-R)
 - service regions

• organizes WARC (World Administrative Radio Conference) - worldwide allocation of frequencies

• Regional body: European Conference of Postal and Telecommunications Administrations (CEPT)

Extract of the allocation plan/radio spectrum (by the ITU)

1610-1670 MHz (UHF)					
	International Table		United States Table		Remarks
Region 1	Region 2	Region 3	Federal Government	Non-Federal Government	
1610-1610.6 MOBILE-SATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION	1610-1610.6 MOBILE-SATELLITE (Earth-to-space) AERONAUTICAL RADIODETERMINATION SATELLITE (Earth-to- space)	1610-1610.6 MOBILE-SATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION Radiodetermination-Satellite (Earth-to-space)	IGIO-IGIO. MOBILE-SATELLITE (Earth-to-space) US319 AERONAUTCA: RADIONAVIGATION U3200 RADIODETERMINATION-SATELLITE(Earth-to-space)		Satellite Communications (25) Aviation (87)
\$5.341 \$5.355 \$5.359 \$5.363 \$5.364 \$5.366 \$5.367 \$5.368 \$5.369 \$5.371 \$5.372	\$5.341 \$5.364 \$5.366 \$5.367 \$5.368 \$5.370 \$5.372	\$5.341 \$5.355 \$5.359 \$5.364 \$5.366 \$5.367 \$5.368 \$5.369 \$5.372	\$5.341 \$5.364 \$5.366 \$5.367 \$	5.368 \$5.372 U\$208	
16106161.3 MOBILE-SATELLITE (Earth-to-space) RADIO ASTRONOMY AERONAUTICAL RADIONAVIGATION S5.149 55.341 55.355 55.369 S3.863 53.966 53.366 53.96	1610 - 6161.8 MOBILE-SATELLITE (Earth-to-space) RADIO ASTRONOMY AERONAUTICAL RADIONAVIGATION RADIODETEMINATION- SATELLITE (Earth-to- space) 55.149 55.364 55.364 55.365 53.67 55.368 53.370 55.372	1610613.8 MOBILE-SATELLITE (Earth-to-space) RADIO ASTRONOMY AERONAUTCAL RADIONAVIGATION Radiodeterministimic-satellite (Earth-to-space) 55.149 55.349 63.360 53.365 53.46 53.365	1610 - 61613.8 MOBILE-SATELLITE (Earth-te RADIO ASTRONOMY AERONAUTICAL RADIONAT RADIODETERMINATION-SA S5.341 S5.364 S5.366 S5.367 S	5-space) US319 /IGATION US260 TELLITE (Earth-to-space) 5.368 S5.372 US208	
1613.8-1626.5 MOBIL-5-SATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION Mobile-satellite (space-sto-Earth) 55.341.55.355.55.359 55.363	1613 8-1626.5 MOBILE-SATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION RADIODETERMINATION- SATELLITE (Earth-to- space) Mobile-satellite (space-to- Earth)	1613.8-1626.5 MOBILE-SAATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION Mobile-satellite (space-to- Earth) Radiodetermination- satellite (Earth-to-space) 55.341 55.355 55.359 55.364	1613.8-1626.5 MOBILE-SATELLITE (Earth-to AERONAUTICAL RADIONA' RADIODE TERMINATION-SA Mobile-satellite (space-to-Earth)	o-space) US319 /IGATION US260 TELLITE (Earth-to-space)	
\$5.364 \$5.365 \$5.366 \$5.367 \$5.368 \$5.369 \$5.371 \$5.372	\$5.341 \$5.364 \$5.365 \$5.366 \$5.367 \$5.368 \$5.370 \$5.372	\$5.365 \$5.366 \$5.367 \$5.368 \$5.369 \$5.372	\$5.341 \$5.364 \$5.365 \$5.366 \$	5.367 S5.368 S5.372 US208	

・ロト ・四ト ・ヨト ・ヨト

12

Background Radiowave propagation Examples of antennas

Outline

Signal processing elements

- What do we transmit? Information!
- Source coding
- Modulation
- Multiplexing

Propagation and radio communications

- Background
- Radiowave propagation
- Examples of antennas

3 Engineering

- Noise
- Link budget

Background Radiowave propagation Examples of antennas

Radiowave propagation

Important parameters:

- channel characteristics
 - attenuation (distance)
 - wave polarization
 - rain mitigation
- antenna design
- power budget

Inverse square law of radiation

The power flux density (or power density) S, over the surface of a sphere of radius r_a from the point P, is given by

$$S_a = \frac{P_t}{4\pi r_a^2} \left[\frac{W}{m^2}\right] \tag{8}$$

・ロト ・四ト ・ヨト ・ヨト

æ

Definition

The Effective Isotropic Radiated Power (EIRP) of a transmitter is the power that the transmitter appears to have if the transmitter were an isotropic radiator (if the antenna radiated equally in all directions).

Therefore, at the receiver,

$$P_t = P_E G_E \tag{9}$$

◆□▶ ◆舂▶ ◆産▶ ◆産▶

Definition

The effective area of an antenna is the ratio of the available power to the power flux density (Poynting vector):

$$A_{eff} = \frac{P_R}{S_{eff}} \tag{10}$$

Theorem

The effective area of an antenna is related to its gain by the following formula

$$A_{eff} = G_E \frac{\lambda^2}{4\pi} \tag{11}$$

(中) (종) (종) (종) (종) (종)

$$P_{R} = S_{eff,R} A_{eff,R}$$
$$= \left(\frac{P_{E} G_{E}}{4\pi d^{2}}\right) A_{eff,R} = \left(\frac{P_{E} G_{E}}{4\pi d^{2}}\right) \left(\frac{\lambda^{2}}{4\pi}\right) G_{R} = P_{E} G_{E} G_{R} \left(\frac{\lambda}{4\pi d}\right)^{2}$$

Free space path loss	Friis's relationship
$L_{FS} = \left(rac{\lambda}{4\pi d} ight)^2$	$\varepsilon = \frac{P_E}{P_R} = \left(\frac{4\pi d}{\lambda}\right)^2 \frac{1}{G_E G_R}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Decibel as a common power unit

$$x \leftrightarrow 10 \log_{10}(x) [dB] \tag{12}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

$$P[dBm] = 10\log_{10}\frac{P[mW]}{1[mW]}$$
(13)

x [W]	$10\log_{10}(x)[dBW]$		
1[W]	0[<i>dBW</i>]		
2[W]	3[dBW]		
0,5[W]	-3[dBW]		
5 [<i>W</i>]	7 [dBW]		
10 <i>ⁿ</i> [<i>W</i>]	10 imes n [dBW]		

Are high frequencies less adequate?

In [dB], Friis's relationship becomes

$$\varepsilon = 32.5 + 20 \log f_{[MHz]} + 20 \log d_{[km]} - G_{E[dB]} - G_{R[dB]}$$

The attenuation (loss) increases with f. So ?! but

$$A_{eff} = G_E \frac{\lambda^2}{4\pi} \tag{14}$$

(中) (문) (문) (문) (문)

$$\varepsilon = \left(\frac{4\pi d}{\lambda}\right)^2 \frac{1}{G_E G_R} = \left(\frac{4\pi d}{\lambda}\right)^2 \frac{\lambda^2}{4\pi A_E} \frac{\lambda^2}{4\pi A_R}$$
(15)
$$= \frac{\lambda^2 d^2}{A_E A_R} = \frac{c^2 d^2}{f^2 A_E A_R}$$
(16)

It all depends on the antenna gains.

Are high frequencies less adequate?

In [dB], Friis's relationship becomes

$$\varepsilon = 32.5 + 20 \log f_{[MHz]} + 20 \log d_{[km]} - G_{E[dB]} - G_{R[dB]}$$

The attenuation (loss) increases with f. So ?! but

$$A_{eff} = G_E \frac{\lambda^2}{4\pi} \tag{14}$$

$$\varepsilon = \left(\frac{4\pi d}{\lambda}\right)^2 \frac{1}{G_E G_R} = \left(\frac{4\pi d}{\lambda}\right)^2 \frac{\lambda^2}{4\pi A_E} \frac{\lambda^2}{4\pi A_R} \qquad (15)$$
$$= \frac{\lambda^2 d^2}{A_E A_R} = \frac{c^2 d^2}{f^2 A_E A_R} \qquad (16)$$

It all depends on the antenna gains.

Practical case: VSAT in the Ku-band [1]

Antenna gain: 48.93[dB] The free space path loss is, in [dB],

$$L_{FS} = 32.5 + 20 \log f_{[MHz]} + 20 \log d_{[km]} = 205.1 [dB]$$

The received power is, in [dB],

$$P_R = P_E + G_E + G_R - L_{FS}$$
(17)
= 10 + 48.93 + 48.93 - 205.1 = -97.24 [dB] (18)

In [W], the received power is

$$P_R = 10^{-\frac{97.24}{10}} = 1.89 \times 10^{-10} \, [W] = 189 \, [pW] \tag{19}$$

Background Radiowave propagation Examples of antennas

Outline

Signal processing elements

- What do we transmit? Information!
- Source coding
- Modulation
- Multiplexing

Propagation and radio communications

- Background
- Radiowave propagation
- Examples of antennas

3 Engineering

- Noise
- Link budget

Background Radiowave propagation Examples of antennas

Terrestrial antennas

Marc Van Droogenbroeck Satellite Communications

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Ground station antenna

Parabolic (dish) antenna

・ロト ・ 日 ・ ・ モ ・ ・ モ ・

2

Horn antenna and waveguide feed

《曰》 《聞》 《臣》 《臣》 三臣

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Patch array antenna

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Phased array antenna

Earth atmosphere

$$\lambda[m] = \frac{c}{f} = \frac{3 \times 10^8 \,[m/s]}{f \,[Hz]}$$

Attenuation due to atmospheric gases

Zenith attenuation due to atmospheric gases (source: ITU-R P.676-6)

Service Level Agreement (SLA)

▲ロト ▲御ト ▲注ト ▲注ト 注目 めんぐ

Rain attenuation

Total path rain attenuation as a function of frequency and elevation angle. Location: Washington, DC, Link Availability: 99%

Cloud attenuation

Cloud attenuation as a function of frequency, for elevation angles from 5 to 30°

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Noise Link budget

Outline

Signal processing elements

- What do we transmit? Information!
- Source coding
- Modulation
- Multiplexing
- Propagation and radio communications
 - Background
 - Radiowave propagation
 - Examples of antennas

3 Engineering

- Noise
- Link budget

Noise Link budget

Noise

The noise power P_N is given by the Nyquist formula:

$$P_N = k_B T W \tag{20}$$

where

- k_B = 1,38 × 10⁻²³ [J/K] is the constant of Boltzmann (−198 [dBm/K/Hz] = −228.6 [dBw/K/Hz]),
- T is the equivalent noise temperature of the noise source
- W is the noise bandwidth

Two-port device

Definitions

Noise Factor (F):

$$\mathsf{F} = \frac{\left(\frac{S}{N}\right)_{\text{in}}}{\left(\frac{S}{N}\right)_{\text{out}}} > 1 \tag{21}$$

Noise Figure (NF):

$$NF = 10 \log_{10} F \tag{22}$$

Effective noise temperature T_e ($T_0 = 290[K]$):

$$T_e = T_0(F - 1) \tag{23}$$

Noise factor of cascaded stages

Receiver front end

Rule of thumb: highest gain and best noise figure first. Then

$$NF = NF_1 + \frac{NF_2 - 1}{G_1} + \frac{NF_3 - 1}{G_1G_2} + \dots \simeq NF_1 + \frac{NF_2 - 1}{G_1}$$
(26)
$$T_e = T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1G_2} + \dots \simeq T_{e1} + \frac{T_{e2}}{G_1}$$
(27)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Low Noise Amplifier: $T_{LA} = 290 \times (10^{\frac{4}{10}} - 1) = 438 [K]$

• Line. For a passive two-part, F = A.

•
$$T_{Line} = 290 \times (10^{\frac{3}{10}} - 1) = 289 [K],$$

• $G_{Line} = \frac{1}{2}$

The effective noise temperature, including the antenna noise, is

$$T_{e} = t_{A} + T_{e1} + \frac{T_{e2}}{G_{1}} + \frac{T_{e3}}{G_{1}G_{2}} + \dots$$
(28)
= $\underbrace{60 + 438}_{0} + \frac{289}{1000} + \frac{2610}{1000 \times \frac{1}{2}} + \dots = 509.3 [K]$ (29)

æ

Representative values for the increase in antenna temperature due to rain [1]

(a)

TYPICAL ANTENNA TEMPERATURE VALUES (NO RAIN)

Rain Fade Level (dB)	1	3	10	20	30
Noise Tempeature (°K)	56	135	243	267	270

(b)

ADDITIONAL RADIO NOISE CAUSED BY RAIN

Noise Link budget

Outline

Signal processing elements

- What do we transmit? Information!
- Source coding
- Modulation
- Multiplexing
- Propagation and radio communications
 - Background
 - Radiowave propagation
 - Examples of antennas

3 Engineering

- Noise
- Link budget

Noise Link budget

Link budget: typical parameters for a communication satellite [1]

Parameter	Uplink	Downlink
Frequency	14.1[GHz]	12.1[GHz]
Bandwidth	30[<i>MHz</i>]	30 [<i>MHz</i>]
Transmitter power	100 - 1000 [W]	20 - 200 [W]
Transmitter antenna gain	54 [dBi]	36.9 [<i>dBi</i>]
Receiver antenna gain	37.9 [dBi]	52.6 [dBi]
Receiver noise figure	8 [<i>dB</i>]	3 [<i>dB</i>]
Receiver antenna temperature	290[K]	50[K]
Free space path loss (30° elevation)	207.2 [<i>dB</i>]	205.8[<i>dB</i>]

< A

Link budget

For further reading

📎 L. Ippolite.

Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design and System Performance. Wiley, 2008.

🔈 J. Gibsons.

The Communications Handbook. CRC Press, 1997.

🍉 Wikipedia.

http://wikipedia.org