
7 DIGITAL FILTER REALIZATION 

7.1 INTRODUCTION 

In the preceding lessons we learned how to design Linear Time Invariant (LTI) 
digital filters, both IIR and FIR. The end result of the design was the transfer function 

of the filter or, equivalently, the difference equation it represents. We thus far 
looked at a filter as a black box, whose input-output relationships are well defined, but 
whose internal structure is ignored. Now it is time to look more closely at possible 
internal structures of digital filters, and to learn how to build such filters. It is 
convenient to break the task of building a digital filter into two stages: 

( )H z

1. Construction of a block diagram of the filter. Such a block diagram is called a 
realization of the filter. Realization of a filter at a block-diagram level is 
essentially a flow graph of the signals in the filter. It includes operations such as 
delays, additions, and multiplications of signals by constant coefficients. It 
ignores ordering of operations, accuracy, scaling and the like. A given filter can 
be realized in infinitely many ways. Different realizations differ in their 
properties, and some are better than others. 

2. Implementation of the realization, either in hardware or in software. At this 
stage we must concern ourselves with problems neglected during the realization 
stage: order of operations, signal scaling, accuracy of signal values, accuracy of 
coefficients, accuracy of arithmetic operations. We must analyze the effect of 
such imperfections on the performance of the filter. Finally, we must build the 
filter – either the hardware or the program code (or both, if the filter is a 
specialized combination of hardware and software). 

 
In this lesson we cover the most common filter realizations. We describe each 

realization by its block diagram and by a representative MATLAB code. 

7.2 BASIC BUILDING BLOCKS OF DIGITAL FILTERS 

Any digital system that is linear, time invariant, rational and causal can be realized 
using three basic types of element: 

Unit delay 
The purpose of this element is to hold its input for a unit of time (physically equal to the 
sampling interval T ) before it is delivered to the output. Mathematically, it performs 
the operation 

 ( ) ( )1y n x n= −  (7.1) 
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Unit delay is depicted schematically in Figure 1a. The letter “D,” indicating delay, 
sometimes is replaced by , which is the delay operator in the Z domain. Unit delay 
can be implemented in hardware by a data register, which moves its input to the output 
when clocked. In software, it is implemented by a storage variable, which changes its 
value when instructed by the program. 

1z−

Adder 
The purpose of this element is to add two or more signals appearing at the input at a 
specified time. Mathematically, it performs the operation 

 ( ) ( ) ( )1 2y n x n x n= + +…  (7.2) 

An adder is depicted schematically in Figure 1b. 

Multiplier 
The purpose of this element is to multiply a signal (a varying quantity) by a constant 
number. Mathematically, 

 ( )( )y n a x n=  (7.3) 

A multiplier is depicted schematically in Figure 1c. We do not use a special graphical 
symbol for it, but simply put the constant factor above (or beside) the signal line. A 
standard1 physical multiplier (in hardware or software) can multiply two signal equally 
easily, but such an operation is not needed in LTI filters. 

Figure 1 Basic building blocks for digital filter realizations: a) unit delay; b) adder; c) 
multiplier by a constant 

                                                 
1 Simpler modified multiplier can also perform multiplication by a constant factor. Implementation 

of such multiplier can be much simpler and it is used in special ASIC chips. 
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Example 1 Consider the first-order FIR filter with the transfer function 
FIR . Figure 2a shows a realization of this FIR filter using one 

delay element, two multipliers, and one adder. The input to the delay element at a time n 
is 

( ) ( ) ( ) 10 1H z b b z−= +

( )x n , and its output is then ( )1x n − . The output of the realization is therefore 
 and this is exactly time-domain expression for 

. 
( ) ( ) ( ) ( ) ( )0 1y n b x n b x n= +

( ) ( )( )11/ 1 1H z a z−= +

1−
( )FIRH z

Example 2 Consider the first-order IIR filter with the transfer function 
IIR . Figure 2b shows a realization of this IIR filter using one 

delay element, one multiplier, and one adder. The input to the delay element at a time n 
is then , and its output is then ( )y n ( )1y n − . The output of the realization is therefore 

 and this is exactly time-domain expression for ( ) ( ) ( )1 1y n y n x n− +( )a= − ( )H zIIR . 
This realization is recursive. It builds the present value of ( )y n  from its own past 
values and the input signal. Put another way, the realization uses feedback. 

Figure 2 Realizations of first-order filters: a) FIR; b) IIR 

7.3 DIRECT REALIZATIONS OF IIR FILTERS 

Let  be a rational, causal, stable transfer function. We assume, for 
convenience, that the orders of the numerator and denominator polynomials of the filter 
transfer function are equal

( )H z

2. Thus ( )H z  is given by 

 ( )
( ) ( ) ( )

( )

( )

( )
0

1

1

N
k

k
N

k

k

b k zY z B z
H z

X z A z a k z

−

=

−

=

= = =
+

∑

∑
 (7.4) 

7.3.1 DIRECT FORMS I AND II 

Let us introduce an auxiliary signal ( )u n , related to the input and output signals 
( )x n  and  through ( )y n

 ( ) ( ) ( ) ( ) ( ) ( )1 1u n a u n a N u n N x n= − − − − − +…  (7.5) 
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2 There is no loss of generality in this assumption since it is always possible to extend numerator or 
denominator polynomials by adding zero-valued coefficients. 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1y n b u n b u n b N u n N= + − + +… −  (7.6) 

or, in the Z domain, 

 ( ) ( ) ( ) ( ) ( ) ( )1 ,U z X z Y z B z U z
A z

= =  (7.7) 

Figure 3 shows a realization of (7.5) using the three types of building block (in the 
figure we have used  as an example). By passing 3N = ( )u n  through a chain of  
delay elements, we get the signals 

N
( ) ( ) ( ){ }1 , 2 , ,u n u n u n N− − −… . Then we can form 

 as a linear combination of the delayed signals, plus the input signal ( )u n ( )x n , as is 
expressed in (7.5). We need  multipliers for the coefficients N ( ) ( ){ }1 , ,a a− −… N , and 

 two-input adders to form the sum. The realization uses feedback. N

����

Figure 3 Realization of the auxiliary signal ( )u n  

We can now use (7.6) for generating the output signal ( )y n  from the auxiliary 
signal  and its delayed values. We do this by augmenting Figure 3 with ( )u n 1N +  
multipliers for the coefficients ( ) ( ){ }0 , ,b b N…  and  adders. This results in the 
realization (called direct form II) shown in Figure 4. Note that it is not necessary to 
increase the number of delay elements and such realization is minimal (canonical) 
realization of IIR system. 
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Figure 4 Direct realization (direct form II) of a digital IIR system 

It has the following properties: 
1. The number of delay elements  is the maximum of the orders of polynomials 

 and 
N

( )A z ( )B z . Assuming that these polynomials have no common factor, this 
is the minimum possible number of delays in any realization of . The set 
of values at the outputs of the delay elements is called the state of the system. 

( )H z

2. There are 2  multipliers and 2  adders. However, since some coefficients 
may be zero, there may be a smaller number of adders and multipliers. 

1N + N

3. The realization is recursive, since it generates present value from past values of 
these signals. It can be shown that any realization of an IIR system must be 
recursive if it is required to include only a finite number of delay elements. 

4. Assuming that the input signal ( )x n  is causal. It is necessary to initialize the 
state components before feeding the input signal to the system. The state is 
usually initialized to zero. However, initialization to nonzero values is 
sometimes required, depending on the application. 

 
Another direct realization (direct form I) of -th order IIR filter can be constructed 
using  delay elements

N
2N 3,  for the input signal N ( )x n , and  for the output signal 

. It is based on the auxiliary signal 
N

( )y n ( )v n , related to the input and output signals 
( )x n  and  through ( )y n

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1v n b x n b x n b N x n N= + − + +… −  (7.8) 

 ( ) ( ) ( ) ( ) ( )1 1 ( )y n a y n a N y n N v n= − − − − − +…  (7.9) 

or, in the Z domain, 

                                                 
3 It is non-minimal structure since it uses more than  delay elements. N
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 ( ) ( ) ( ) ( ) ( ) ( )1,V z B z X z Y z V z
A z

= =  (7.10) 

and it is shown in Figure 5. 
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Figure 5 Direct realization (direct form I) of a digital IIR system 

7.3.2 TRANSPOSED DIRECT FORM II 

We now explore an alternative to the direct form realizations. Figure 6 shows a 
realization of (7.9) using the three types of building block (in the figure we again use 

 as an example). The present value of 3N = ( )y n  is built from its own past values and 
the auxiliary signal . To generate ( )v n ( )y n N− , we need  delay elements. These 
elements can be used for generating all intermediate delays, as shown in the figure. This 
realization effectively computes 

N

(7.9) in the Z domain form 

  (7.11) ( ) ( ) ( )( ) ( )( ) ( ) ( )1 1 11 1Y z a N z a N z a z Y z V z− − −= − − − − − +… …

The state of this realization does not consist of pure delays of a single signal, but of 
linear combinations of different delays. As before, we need  multipliers for the 
coefficients 

N
( ) ({ )}1 , ,a a− −… N  and  two-input adders. N
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Figure 6 Realization of ( )y n  from the auxiliary signal  ( )v n

We can now use (7.8) for generating the auxiliary signal ( )v n  from the input signal 
( )x n  and its delayed values. We do this by augmenting Figure 6 with  multipliers 

for the coefficients 
1N +

( ) ( ){ }0 , ,b b N…  and  adders. This results in the realization 
shown in Figure 7. Note that it is not necessary to increase the number of delay 
elements

N

4, since the existing elements can include of the necessary delay of the input 
signal. 

The realization shown in Figure 7 is known as a transposed direct realization  (or 
transposed direct form II), for reasons explained next. The transposed direct form II 
shares the main properties of the direct form II. In particular, it has the same number of 
delays, multipliers, and two-input adders5. However, the two realizations have 
different states6.  

                                                 
4 This is also canonical realization of IIR filter. 
5 Note that, in Figure 7, there are 1N −  three-input adders and 2 two-input adders, which are 

equivalent to  two-input adders. 2N
6 As long as the state is initialized to zero, this difference is iconsequential. However, when 

initialization to a nonzero state is necessary, the two realizations require different computations of the 
initial state. 
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Figure 7 Transposed direct form II realization of a digital IIR filter 

Comparison of Figures 4 and 7 reveals that the later can be obtained from the 
former by the following sequence of operations: 

1. Reversal of the signal flow direction in all lines (i.e., reversal of all arrows). 
2. Replacing all adders by contact points, and all contact points by adders. 
3. Interchange the input and output. 

 
This sequence of operation is called transposition of the realization. A known theorem 
in the network theory states that transposition of a given realization leaves the transfer 
function of the realization invariant. Transposition of the transposed realization 
obviously gives back the original realization. Two such realizations are said to be dual 
to each other. 

The procedure direct in the Appendix implements the two direct realizations of an 
IIR filter. The MATLAB function filter performs the same computation more 
efficiently, since it is coded internally. Therefore, this program is intended for 
educational purposes, rather than for serious use. 
 

7.4 DIRECT REALIZATIONS OF FIR FILTERS 

Realizations of digital FIR filters can be obtained from IIR filter realizations by 
specializing these realizations to the case ( ) 1A z = . However since FIR filters are 
usually either symmetric or anti-symmetric, we can save about half the number of 
multiplications by exploiting symmetry. 
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For an FIR filter with odd number of coefficients M 7 we can write the filter’s 
output as  

 ( ) ( ) ( ) ( )
1 1

2

0

1 1 1
2 2

M

k

M My n h x n h k x n k x n M k

−⎛ ⎞−⎜ ⎟
⎝ ⎠

=

− −⎛ ⎞ ⎛ ⎞= − + − ± − + +⎡ ⎤⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠
∑  (7.12) 

whereas for an even number of coefficients we put 

 ( ) ( ) ( ) (
1

2

0
1

M

k
y n h k x n k x n M k

⎛ ⎞−⎜ ⎟
⎝ ⎠

=

= − ± − + )+⎡ ⎤⎣ ⎦∑  (7.13) 

The plus sign is for a symmetric filter, and the minus sign for an anti-symmetric one. 
Figure 8 shows a realization of (7.12) for odd 8 M . This realization can be regarded as a 
specialization of the direct form II shown in Figure 4 to an FIR filter. As we see, 
symmetry (or anti-symmetry) helps reducing the number of multiplications from M  to 

, the number of additions, however, is still / 2M⎡⎢ ⎤⎥ 1M − . 
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Figure 8 Direct realization of a symmetric or anti-symmetric FIR filter with odd M  

By exploiting the rules of transposition of realizations, we get from Figure 8 the 
transposed direct realization shown in Figure 9. 

                                                 
7 For FIR filters with M  coefficients we use the same symbols as in previous lessons that is M

( ) ( ) ( )
1

DIGITAL FILTERS – LESSONS (2007) 

0k

z h k x n k
−

= −∑
=

H   
8 Realizations for even length M require modifications according to (7.13) 
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Figure 9 Transposed direct realization of a symmetric or anti-symmetric FIR filter with 
odd M  

7.5 PARALLEL REALIZATION 

Recall the partial fraction decomposition of a general rational causal transfer 
function whose poles are simple: 

( )
( )

( )
( ) ( ) ( )0

1
1

1

0
11

N
k

M
N Mk k

M
k k k

k

b k z
AH z c c N M z
p za k z

−

− −=
−

− =

=

= = + + − +
−+

∑
∑

∑
…  (7.14) 

For most practical digital IIR filters N M≤ , so the right side of (7.14) contains only 
coefficient . Also, if k( )0c p  is complex then  is complex as well, and the conjugate 
fraction (* denotes complex conjugate) 

kA

 
*

* 11
k

k

A
p z−−

 (7.15) 

also appears on the right side. The two terms can be combined together under common 
denominator, yielding the real fraction 
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( ) ( )

( )
* * *

* 1 * 21
k k k k k k

k k k k

A A A p A p z

p p z p p z

1−

−

+ − +

− + + −
 (7.16) 

Let us denote the order of the filter by M . Also, let 1M  be the number of real poles and 
22M  the number of complex poles, so 

 1 2 2M M M= +  (7.17) 

After joining complex conjugate fractions, we can bring (7.14) to the form 

 ( ) ( ) ( )
( )

( ) ( )
( ) ( )

1 2 1
1 1

1 1
1 1 1 1

2 1 2
0

1 1 2 1

M M

k k

f k f M k f M k z
H z c

e k z e M k z e M k z

−

22− − −
= =

+ − + +
= + +

+ + + − + +∑ ∑  (7.18) 

where the real numbers ( ) ( ){ }, ,1e k f k k M≤ ≤  depend on { }, ,1k kA p k M≤ ≤ . The 
sum of the right side of (7.18) corresponds to a parallel connection of the individual 
terms. Each of the first and second order terms can be implemented by a direct 
realizations described in the previous parts. The constant term  is realized by 
simple multiplication. Figure 10 illustrates the result for 

( )0c
1 1M = , , . The 

realization thus obtained is called parallel realization. 
2 1M = 3M =
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Figure 10 Parallel realization of digital IIR system 

Parallel realization requires the same number of delay elements as the direct 
realizations. If , it also requires the same amount of additions and 
multiplications. If , the direct realizations are more economical, since in this 
case they require only  multiplications and additions, whereas parallel 

N M=
N M<

1N M+ +
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realization still requires 2 1M +  operations of each kind9. As we have said, the parallel 
realization is limited to systems whose poles are simple. It can be extended to the case 
of multiple poles, but then a parallel realization is rarely used10. The advantage of 
parallel realization over direct realizations is the lower sensitivity of the frequency 
response of the filter to finite word length. 

 The procedure tf2rpf in the Appendix computes the parallel decomposition (7.18) 
of a digital IIR filter.  

7.6 CASCADE REALIZATION 

7.6.1 BASIC PRINCIPLE AND FEATURES 

Let us assume again that M N=  for the digital filter in question. Assume for now 
that  is even. Recall the pole-zero factorization of the transfer function N

 ( ) ( )
( )

( )

1

1

1

1

1
0

1

N

k
k
N

k
k

z z
H z b

p z

−

=

−

=

−
=

−

∏

∏
 (7.19) 

Since  is even, we can always rewrite N (7.19) as 

 ( ) ( ) ( ) ( )
( ) ( )

1 2/ 2

1
1

1 2 1 2
0

1 2 1 2

N

k

h k z h k z
H z b

g k z g k z 2

− −

− −
=

+ − +
=

+ − +∏  (7.20) 

The second order factors in the numerator and the denominator are obtained by 
expanding conjugate pairs of zeros or poles, hence the coefficients 

( ) ( ){ }, ,1g k h k k N≤ ≤  are real. In general, some poles or zeros may be real. Since we 
have assumed that  is even, their number must be even, so we can expand them in 
pairs as well. Thus in general, the second order terms in 

N
(7.20) may correspond to either 

real or complex pairs of poles or zeros. 
A product of transfer functions represents a cascade connection of the factors. 

Therefore we can implement (7.20) as a cascade connection of  sections, each of 
order 2. Each section can be realized by either of the direct realizations. Figure 11 
illustrates the connection for 

/ 2N

4N = . This is a cascade realization. Note that constant 
gain  can appear anywhere along the cascade (in Figure 11 it appears in the middle 
between two sections). The second order sections are also called bi-quads. 

( )0b

                                                 
9 The reason is that all the coefficients ( )f k  will be nonzero in general. 
10 Parallel realization of a system with multiple poles has a mixed parallel/series structure. 
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Figure 11 Cascade realization of a digital IIR system 

Remarks for cascade realization 
1. Although we have assumed that  is even, the realization can be easily 

extended to the case of odd . In this case there is an extra first-order term, so 
we must add a first order section in cascade. 

N
N

2. Although we have assumed that N M= , this condition is not necessary. Extra 
poles can be represented by section with zero values for the ( ){ }h k  coefficients, 
whereas extra zeros can be represented by sections with zero values for the 

( ){ }g k  coefficients. 
3. The realization is minimal in terms of number of delays, additions and 

multiplications (with the understanding that zero-valued coefficients save the 
corresponding multiplications and additions). 

4. The realization is nonunique, since: 
a) There are multiple ways of pairing each second-order term in the 

denominator with one in the numerator. In the next section we discuss 
the pairing problem in detail. 

b) There are multiple ways of ordering the sections in the cascade 
connection. 

c) There are multiple ways of inserting the constant gain factor . ( )0b
5. Contrary to the parallel realization, the cascade realization is not limited to 

simple poles. Moreover, it does not require condition . Cascade 
realization is applicable to FIR filters, although its use for such filters is 
relatively uncommon. 

N M≤

7.6.2 PAIRING IN CASCADE REALIZATION 

When cascade realization is implemented in floating point and at a high precision 
(such as in MATLAB), the pairing of poles and zeros to second order sections is of little 
importance. However, in fixed point implementations and short word lengths, it is 
advantageous to pair poles and zeros to produce a frequency response for each section 
that is as flat as possible (i.e., such that the ratio of the maximum to the minimum 
magnitude response is close to unity) . We now describe a pairing procedure that 
approximately achieves this goal. We consider only digital filters obtained from one of 
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the four standard filter types (Butterworth, Chebyshev-I, Chebyshev-II, elliptic) through 
an analog frequency transformation followed by a bilinear transform. Such filters satisfy 
the following properties: 

1. The number of zeros is equal to the number of poles. If the underlying analog 
filter has more poles than zeros, the extra zeros of the digital filter are all at 

. 1z = −
2. The number of complex poles is newer smaller than the number of complex 

zeros. 
3. The number of real poles is not larger than 2. A low-pass filter has one real pole 

if its order is odd, and this pole may be transformed to two real poles or to a pair 
of complex poles by either a low-pass to band-pass or low-pass to band-stop 
transformation. Except for those, all poles of the analog filter are complex, 
hence so are poles of the digital filter. 

 
The basic idea is to pair each pole with a zero as close to it as possible. This makes 

the magnitude response of the pole-zero pair as flat as possible. The pairing procedure 
starts at the pair of complex poles nearest to the unit circle (i.e., those with the largest 
absolute value) and pair them with the nearest complex zeros. It then removes these two 
pairs from the list and proceeds according to the same rule. When all the complex zeros 
are exhausted, pairing continues with the real zeros according to the same rule. Finally, 
there may be left up to two real poles, and these are paired with the remaining real 
zeros. 

The procedure pairpz in the Appendix implements this algorithm. It receives the 
vectors of poles and zeros, supplied by the program iirdes and supplies arrays of second 
order numerator and denominator polynomials (a first order pair, if any, is represented 
as a second order pair with zero coefficient of 2z− ). The routine cplxpair is a built-in 
MATLAB function that orders the poles (or zeros) in conjugate pairs, with real ones (if 
any) at the end. The program then selects one representative of each conjugate pair and 
sorts them in decreasing order of magnitude. Next the program loops over the complex 
poles and, for each one, finds the nearest complex zero. Every paired zero is removed 
from the list. The polynomials of the corresponding second order section are computed 
and stored. When the complex zeros are exhausted, the remaining complex poles are 
paired with the real zeros using the same procedure. Finally, the real poles are paired 
with the remaining real zeros. 

The procedure cascade in the Appendix implements the cascade realization of 
digital IIR filter. It accepts the parameters computed by the program pairpz. The input 
sequence is fed to the first section, the output is fed to the second section, and so forth. 
Finally, the result is multiplied by the constant gain. 

The cascade realization is usually considered as the best of all those we have 
discussed11, therefore it is the most widely used. 
 

 

                                                 
11 There are some other realizations e.g. state space realizations of digital filters that have very good 

numerical properties. 
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APPENDIX - MATLAB PROGRAMS 

The MATLAB software is from the book [1] and available by anonymous file 
transfer protocol (ftp) from: 
ftp.wiley.com/public/college/math/matlab/bporat 
ftp.technion.ac.il/pub/supported/ee/Signal_processing/B_Porat 
 

function y = direct(typ,b,a,x); 
% Synopsis: direct(typ,b,a,x). 
% Direct realizations of rational transfer functions. 
% Input parameters: 
% typ: 1 for direct realization, 2 for transposed 
% b, a: numerator and denominator polynomials 
% x: input sequence. 
% Output: 
% y: output sequence. 
 
p = length(a)-1; q = length(b)-1; pq = max(p,q); 
a = a(2:p+1); u = zeros(1,pq); % u: the internal state 
if (typ == 1), 
   for i = 1:length(x), 
      unew = x(i)-sum(u(1:p).*a); 
      u = [unew,u]; 
      y(i) = sum(u(1:q+1).*b); 
      u = u(1:pq); 
   end 
elseif (typ == 2), 
   for i = 1:length(x), 
      y(i) = b(1)*x(i)+u(1); 
      u = [u(2:pq),0]; 
      u(1:q) = u(1:q) + b(2:q+1)*x(i); 
      u(1:p) = u(1:p) - a*y(i); 
   end 
end 
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function [c,nsec,dsec] = tf2rpf(b,a); 
% Synopsis: [c,nsec,dsec] = tf2rpf(b,a). 
% Real partial fraction decomposition of b(z)/a(z). The polynomials 
% are in negative powers of z. The poles are assumed distinct. 
% Input parameters: 
% a, b: the input polynomials 
% Output parameters: 
% c: the free polynomial; empty if deg(b) < deg(a) 
 
nsec = []; dsec = []; [c,A,alpha] = tf2pf(b,a); 
while (length(alpha) > 0), 
  if (imag(alpha(1)) ~= 0), 
    dsec = [dsec; [1,-2*real(alpha(1)),abs(alpha(1))^2]]; 
    nsec = [nsec; [2*real(A(1)),-2*real(A(1)*conj(alpha(1)))]]; 
    alpha(1:2) = []; A(1:2) = []; 
  else, 
    dsec = [dsec; [1,-alpha(1),0]]; nsec = [nsec; [real(A(1)),0]]; 
    alpha(1) = []; A(1) = []; 
  end 
end 
 
 
 
function y = parallel(c,nsec,dsec,x); 
% Synopsis: y = parallel(c,nsec,dsec,x). 
% Parallel realization of an IIR digital filter. 
% Input parameters: 
% c: the free term of the filter. 
% nsec, dsec: numerators and denominators of second-order sections 
% x: the input sequence. 
% Output: 
% y: the output sequence. 
 
 [n,m] = size(dsec); dsec = dsec(:,2:3); 
u = zeros(n,2); % u: the internal state 
for i = 1:length(x), 
   y(i) = c*x(i); 
   for k = 1:n, 
      unew = x(i)-sum(u(k,:).*dsec(k,:)); u(k,:) = [unew,u(k,1)]; 
      y(i) = y(i) + sum(u(k,:).*nsec(k,:)); 
   end 
end 
 
 
 
function y = cascade(C,nsec,dsec,x); 
% Synopsis: y = cascade(C,nsec,dsec,x). 
% Cascade realization of an IIR digital filter. 
% Input parameters: 
% C: the constant gain of the filter. 
% nsec, dsec: numerators and denominators of second-order sections 
% x: the input sequence. 
% Output: 
% y: the output sequence. 
 
 [n,m] = size(dsec); 
u = zeros(n,2); % u: the internal state 
dsec = dsec(:,2:3); nsec = nsec(:,2:3); 
for i = 1:length(x), 
   for k = 1:n, 
      unew = x(i)-sum(u(k,:).*dsec(k,:)); 
      x(i) = unew + sum(u(k,:).*nsec(k,:)); 
      u(k,:) = [unew,u(k,1)]; 
   end 
   y(i) = C*x(i); 
end 
 
 
 
function [nsec,dsec] = pairpz(v,u); 
% Synopsis: [nsec,dsec] = pairpz(v,u). 
% Pole-zero pairing for cascade realization. 
% Input parameters: 
% v, u: the vectors of poles and zeros, respectively. 
% Output parameters: 
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% nsec: matrix of numerator coefficients of 2nd-order sections 
% dsec: matrix of denom. coefficients of 2nd-order sections. 
 
if (length(v) ~= length(u)), 
  error('Different numbers of poles and zeros in PAIRPZ'); end 
u = reshape(u,1,length(u)); v = reshape(v,1,length(v)); 
v = cplxpair(v); u = cplxpair(u);  
vc = v(find(imag(v) > 0)); uc = u(find(imag(u) > 0)); 
vr = v(find(imag(v) == 0)); ur = u(find(imag(u) == 0));  
[temp,ind] = sort(abs(vc)); vc = vc(fliplr(ind)); 
[temp,ind] = sort(abs(vr)); vr = vr(fliplr(ind)); 
nsec = []; dsec = []; 
for n = 1:length(vc), 
   dsec = [dsec; [1,-2*real(vc(n)),abs(vc(n))^2]]; 
   if (length(uc) > 0), 
      [temp,ind] = min(abs(vc(n)-uc)); ind = ind(1); 
      nsec = [nsec; [1,-2*real(uc(ind)),abs(uc(ind))^2]]; 
      uc(ind) = []; 
   else, 
      [temp,ind] = min(abs(vc(n)-ur)); ind = ind(1); 
      tempsec = [1,-ur(ind)]; ur(ind) = []; 
      [temp,ind] = min(abs(vc(n)-ur)); ind = ind(1); 
      tempsec = conv(tempsec,[1,-ur(ind)]); ur(ind) = []; 
      nsec = [nsec; tempsec]; 
   end 
end 
if (length(vr) == 0), return 
elseif (length(vr) == 1), 
   dsec = [dsec; [1,-vr,0]]; nsec = [nsec; [1,-ur,0]]; 
elseif (length(vr) == 2), 
   dsec = [dsec; [1,-vr(1)-vr(2),vr(1)*vr(2)]]; 
   nsec = [nsec; [1,-ur(1)-ur(2),ur(1)*ur(2)]]; 
else 
   error('Something wrong in PAIRPZ, more than 2 real zeros'); 
end 
 
 
function [b,a,v,u,C] = iirdes(typ,band,theta,deltap,deltas); 
% Synopsis: [b,a,v,u,C] = iirdes(typ,band,theta,deltap,deltas). 
% Designs a digital IIR filter to meet given specifications. 
% Input parameters: 
% typ: the filter type: 'but', 'ch1', 'ch2', or 'ell' 
% band: 'l' for LP, 'h' for HP, 'p' for BP, 's' for BS 
% theta: an array of band-edge frequencies, in increasing 
%        order; must have 2 frequencies if 'l' or 'h', 
%        4 if 'p' or 's' 
% deltap: pass-band ripple/s (possibly 2 for 's') 
% deltas: stop-band ripple/s (possibly 2 for 'p') 
% Output parameters: 
% b, a: the output polynomials 
% v, u, C: the output poles, zeros, and constant gain. 
 
% Prewarp frequencies (with T = 1) 
omega = 2*tan(0.5*theta); 
% Transform specifications 
if (band == 'l'), wp = omega(1); ws = omega(2); 
elseif (band == 'h'), wp = 1/omega(2); ws = 1/omega(1); 
elseif (band == 'p'), 
   wl = omega(2); wh = omega(3); wp = 1; 
   ws = min(abs((omega([1,4]).^2-wl*wh) ... 
        ./((wh-wl)*omega([1,4])))); 
elseif (band == 's'), 
   wl = omega(2); wh = omega(3); ws = 1; 
   wp = 1/min(abs((omega([1,4]).^2-wl*wh) ... 
        ./((wh-wl)*omega([1,4])))); 
end 
% Get low-pass filter parameters 
[N,w0,epsilon,m] = lpspec(typ,wp,ws,min(deltap),min(deltas)); 
% Design low-pass filter 
[b,a,v1,u1,C1] = analoglp(typ,N,w0,epsilon,m); 
% Transform to the required band 
ww = 1; if (band == 'p' | band == 's'), ww = [wl,wh]; end 
[b,a,v2,u2,C2] = analogtr(band,v1,u1,C1,ww); 
% Perform bilinear transformation 
[b,a,v,u,C] = bilin(v2,u2,C2,1); 
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