
 

 

4.2.6. Design of Equiripple Linear-Phase FIR Digital Filter 
 The windowing method and the frequency-sampling method are relatively simple techniques for designing 
linear-phase FIR filter. However, they also possess some minor disadvantages. A major problem, is a lack of precise 
control of the critical frequencies such cut off frequencies of pass-band and stop-band. 
 The filter design method described in this section is formulated as a Chebyshev approximation problem. It 
is viewed as an optimum design criterion in the sense that the weighted approximation error between the desired 
frequency response and the actual frequency response is spread evenly across the pass-band and evenly across the 
stop-band of the filter and the maximum error is minimized. The resulting filter designs have ripples in both the pass-
band and the stop-band. 
 To describe the design procedure, let us consider the design of a low-pass filter with pass-band cut off 
frequency (edge frequency) Pω  and stop-band band cut off frequency (edge frequency) Sω . From the general 
specification given in the next figure, in the pass-band, the filter frequency response satisfies the condition 
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Similarly, in the stop-band, the filter response is specified to fall between the limits 2δ± , that is 
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Thus 1δ  represents the ripple in the pass-band and 2δ  represents the attenuation or ripple in the stop-band. The 
remaining filter parameter is M, the filter length or the number of coefficients. Then the filter is described by 
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 As we recall, there are four different cases that result in a linear phase FIR filter. They are summarized 
below. 
 
Case 1: Symmetric unit sample response and h(n)=h(M-1-n) and M odd. 
Case 2: Symmetric unit sample response and h(n)=h(M-1-n) and M even. 
Case 3: Antisymmetric unit sample response and h(n)=-h(M-1-n) and M odd. 
Case 4: Antisymmetric unit sample response and h(n)=-h(M-1-n) and M even. 
 
It can be shown (see e.g. references), that ( )rH ω can be in these four cases expressed in the form, 
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and L is given in the next Table. The ( )kα  representing 
the parameters of the filter, which are linearly related to  
the unit sample response h(n). 
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In addition to the common framework given above for the representation of ( )rH ω , we also define the 

real-valued desired (ideal) frequency response ( )drH ω  and the weighting function ( )W ω  on the estimation error. 

The real-valued desired (ideal) frequency response ( )drH ω  is simply defined to be unity in the pass-band and zero 
in the stop-band i.e.   
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The weighting function on the approximation error allows us to choose the relatively size of the errors in the 
different frequency bands (i.e. in the pass-band and in the stop-band). In particular, it is convenient to normalize 

( )W ω  to the unity in the stop-band and set 2 1( ) /W ω δ δ=  in the pass-band, i.e. 
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Then we simply select ( )W ω  in the pass-band to reflect our emphasis on the relative size of the ripple in the stop-
band to the ripple in the pass-band. 
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With the specification of ( )drH ω  and ( )W ω , we can now define the weighted approximation error as  
 

[ ] [ ] ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
dr

dr r dr
HE W H H W H Q P W Q P
Q
ωω ω ω ω ω ω ω ω ω ω ω
ω

 
= − = − = − 

 
 

 

For mathematical convenience, we define a modified weighting function ( )W ω  and the modified desired frequency 

response ( )drH ω  as  
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Then the weighted approximation error may be expressed as  
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for all different types of linear-phase FIR filter.  
 Given the error function ( )E ω , the Chebyshev approximation problem is basically to determine the filter 
parameter ( )kα , that minimize the maximum absolute value of ( )E ω  over the frequency bands in which the 
approximation is to be performed. In mathematical terms we seek the solution to the problem  
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where S represents the set (disjoint union) of frequency bands over which the optimization is to be performed. 
Basically, the set S consists of the pass-bands and stop-bands of the desired filter. The criterion leads to en equiripple 
filter, that is , a filter whose magnitude response (or  ( )rH ω ) oscillates uniformly between the tolerance bounds of 
each band. 
 The solution to this problem is due to Parks and McClellan, who applied the alternation theorem in the 
theory of Chebyshev approximation in combination with the Remez exchange algorithm. As a result of this work, a 
program for designing the FIR filter has been reported by Parks and McClellan. This program represented by 
sophisticated software tools (e.g., in the Signal Processing Toolbox of MATLAB, m-file remez.m: Parks-McClellan 
optimal equiripple FIR filter design) can be applied for designing linear phase FIR filter based on the Chebyshev 
approximation criterion and implemented with the Remez exchange algorithm. This program may be used to design 
low-pass, band-pass, high-pass or stop-band filters, differentiators and Hilbert transformers. 
 
4.2.6.1. MATLAB function for optimal equiripple FIR filter design: b=remez(N,F,A) 
 REMEZ Parks-McClellan optimal equiripple FIR filter design. b=remez(N,F,A) returns a length N+1 
linear phase (real, symmetric coefficients) FIR filter which has the best approximation to the desired frequency 
response described by F and A in the minimax sense. F is a vector of frequency band edges in pairs, in ascending 
order between 0 and 1. 1 corresponds to the Nyquist frequency or half the sampling frequency. A is a real vector the 
same size as F which specifies the desired amplitude of the frequency response of the resultant filter B. The desired 



 

 

response is the line connecting the points (F(k),A(k)) and (F(k+1),A(k+1)) for odd k; REMEZ treats the bands 
between F(k+1) and F(k+2) for odd k as "transition bands" or "don't care" regions. Thus the desired amplitude is 
piecewise linear with transition bands. The maximum error is minimized. 
 For filters with a gain other than zero at Fs/2, e.g., highpass and bandstop filters, N must be even.  
Otherwise, N will be  incremented by one. 
 B=REMEZ(N,F,A,W) uses the weights in W to weight the error. W has one entry per band (so it is half the 
length of F and A) which tells REMEZ how much emphasis to put on minimizing the error in each band  relative to 
the other bands. 
     B=REMEZ(N,F,A,'Hilbert') and B=REMEZ(N,F,A,W,'Hilbert') design filters that have odd symmetry, that 
is, B(k) = -B(N+2-k) for k = 1, ..., N+1. A special case is a Hilbert transformer which has an approx. Amplitude of 1 
across the entire band, e.g. B=REMEZ(30,[.1 .9],[1 1],'Hilbert').  
  B=REMEZ(N,F,A,'differentiator') and B=REMEZ(N,F,A,W,'differentiator') also design filters with odd 
symmetry, but with a special weightingscheme for non-zero amplitude bands. The weight is assumed to be equal to 
the inverse of frequency times the weight W. Thus the filter has a much better fit at low frequency than at high 
frequency. This designs FIR differentiators. 
 
Example 1: 
Design a low-pass filters of length M=21, M=41, M=61, M=101 with a pass-band edge frequency / 4Pω π=  and 

stop-band edge frequency  / 2Pω π= . 
 
Solution and results: application of MATLAB function b=remez(N,F,A). 
F=[0 .25 .5 1]; 
A=[1 1 0 0];  
b21=remez(20,f,a); b40=remez(40,f,a); b61=remez(60,f,a); b101=remez(100,f,a); 
 
4.3. Comparison of Design Methods for Linear-Phase FIR Digital Filter 

Historically, the design method based on the use of windows to truncate the impulse response and to obtain 
the desired spectral shaping was the first method proposed for designing linear-phase FIR filters. The frequency-
sampling method and the Chebyshev approximation method were developed in the 1970s and have sine became very 
popular in the design of practical linear-phase filters. 

The major disadvantage of the window design method is the lack of precise control of the critical 
frequencies such as pass-band cut off frequency (edge frequency) Pω  and stop-band band cut off frequency (edge 

frequency) Sω . The values of Pω  and Sω , in general, depend on the type of window and the filter length M. 

The frequency sampling method provides an improvement over the window design method, since ( )rH ω  

is specified at the frequencies 2 /k k Mω π= , and the transition band is a multiple of 2 /k Mπ . The filter design 
method is particularly attractive when the FIR filter is realized either in the frequency domain by means of the DFT 
or in any of the frequency sampling realizations. The attractive feature of these realizations is that ( )r kH ω  is either 
zero or unity at all frequencies, except in the transition band. 

The Chebyshev approximation method provides total control of the filter specifications, and, as a 
consequence, it is usually preferable over the other two methods. For a low-pass filter, the specification are given in 
terms of the parameters Pω , Sω , 1δ , 2δ and M.  

The Chebyshev design procedure based on the Remez exchange requires that we specify the length of the 
filter M, the critical frequencies Pω  and Sω , and the ratio 2 1/δ δ . However, it is more natural in filter design to 

specify Pω , Sω , 1δ  and 2δ and to determine the filter length M that satisfies the specifications. Although there is no 
simple formula to determine the filter length from these specification, a number of approximations have been 
proposed for estimating M from Pω , Sω , 1δ  and 2δ . A particularly, simple formula attributed to Kaiser for 
approximating M is 
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where f∆  is the transition band, defined as ( ) / 2S Pf ω ω π∆ = −  (Rabiner’s formula). A more accurate formula 
proposed by Herrmann et al. is  
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where, by definition, 
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( ) ( )1 2 10 1 10 2, 11.012 0.51244 log logf δ δ δ δ= + −  
 
 These formulas are extremely useful in obtaining a good estimate of the filter length required to achieve the 
given specifications f∆ , 1δ  and 2δ .  
 
 

5. Design of IIR Digital Filters from Analog Filters 
 

5.1. Introduction 
 Just as in the design of FIR filters, there are several methods that can be used to design digital filters having 
an infinite-duration unit sample response. The techniques to be described in this section are all based on taking an 
analog filter and converting it to a digital filter. Analog filter design is a mature and well-developed field, so it is not 
surprising that we begin the design of a digital filter in the analog domain and then convert the design into the digital 
domain. 
 An analog filter may be described by its system (transfer) function 
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where kα  and kβ  are the filter coefficients, or by its impulse response h(t), which is related to ( )AH p  by its 
Laplace transform 
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Alternatively, the analog filter having the rational system function ( )AH p  can be described by the linear constant-
coefficient differential equation 
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where x(t) denotes the input signal and y(t) denotes the output of the filter. 
 Each of these three equivalent characterizations of an analog filter leads to alternative method for 
converting the filter into the digital domain, as will be described below. We recall that an analog linear time-
invariant system with system function ( )AH p  is stable if all its poles lies in the left-half  p-plane. Consequently, if 
the conversion technique is to be effective, it should be possess the following desirable properties: 
 
1. The jΩ  axis in the p-plane should map into the unit circle in the z-plane. Thus there will be a direct relationship 

between the two frequency variables in the two domains. 
2. The left-half p-plane should map into the inside of the unite circle in the z-plane.  Thus the stable analog filter 

will be converted to a stable digital filter 
 

It can be shown that physically realizable (causal) and stable IIR filters cannot have linear phase. If the 
restriction on causality is removed, it is possible to obtain a linear phase IIR, at least in principle. 
 In the design of IIR filters, we shall specify the desired filter characteristics for the magnitude response 
only. This does not mean that we consider the phase response unimportant. Since the magnitude and phase 
characteristics are related, we specify the desired magnitude characteristics and accept the phase response that is 
obtained from the design methodology. 
  In the remainder of this section, the following four most widely used procedures for digitizing the transfer 
function ( )AH p include 
 
 
1. Method of approximation of derivatives (differentials). 
2. Impulse-invariant method (impilse invariant transformation). 
3. The matched z-transform. 
4. Bilinear transformation method. 
 
 

5.2. Method of Approximation of Derivatives (Differentials) 
 One of the simplest methods for converting an analog filter into a digital filter is to approximate the 
differential equation  
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by an equivalent difference equation. This approach is often used to solve a linear constant-coefficient differential 
equation numerically on a digital computer. 

 For the derivative 
( )dy t
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 at time t=nT, we substitute the backward difference [ ]( ) ( ) /y nT y nT T T− − . 

Thus 
 

( ) ( ) ( )

t nT

dy t y nT y nT T
dt T=

− −=  

 



 

 

where T represents the sampling interval and y(n)=y(nT). The analog differentiator with output 
( )dy t

dt
 has the 

system (transfer) function H(p)=p, while the digital system produces the output [ ]( ) ( ) /y nT y nT T T− −  has the 
system function  
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Consequently, the transform-domain equivalent is 
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 is replaced by the second difference, which is derived as follows 
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Then the transform-domain, it is equivalent to 
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It is easily follows from the above that the substitution for the k-th derivative of y(t) results in the equivalent 

transfer-domain relationship 
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Consequently, the system (transfer) function for the digital IIR filter obtained as a result of the approximation of the 
derivatives by the finite backward difference is 
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where ( )AH p  is the system function of the analog filter. 
 Now, let us investigate the implications of the mapping from the p-plane to z-plane given by  
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When p j= Ω , then 
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Taking real and imaginary parts of z gives  
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Thus the mapping of the line p j= Ω  for ( ),Ω = −∞ ∞  in the z-plane is the circle described  
 

[ ] [ ]
2 2

21 1Re Im
2 2

z z   − + =      
 

 
i.e. a circle with the center at Re[z]=1/2 and radius 1/2 as shown in the next figure. Therefore, the jΩ  axis maps 
onto perimeter of the circle of radius 1/2  in the z-plane. Except for extremely small values of TΩ , the image of 
the jΩ  axis in the p-plane is off the unit circle in the z-plane. Therefore, the property 1 is not satisfied. 

To see whether property 2 of mapping is satisfied we set 
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ore, stable analog filters maps into stable digital filters using backward differences but their frequency 
ies are not maintained, i.e. this mapping does not preserve the shape of the analog frequency characteristics 
Ω  axis does not even map onto the unit circle). It can be shown also , that the left-half p-plane is mapped  
a circle with the center at Re[z]=1/2 and radius 1/2 The right-half p-plane maps into the region outside 
cle with the center at Re[z]=1/2 and radius 1/2  (see the next figure).   

If T is decreased, more of the frequency response will be concentrated near z=1. For a low-pass filter, this 
ed the matching between the analog and digital filter frequency responses, but significant distortion will still 
and T may have to be inordinately small. Besides, the possible location of the poles of the digital filter are 
d to relatively small frequencies and, as a consequence, the mapping is restricted to design of low-pass filters 

nd-pass filters having relatively small resonant frequencies. Then, if the desired filter is not low-pass (e.g. if it 
-pass or band-stop filter), the above mentioned procedure (T decreasing) typically cannot be applied. As a 
the backward difference transformation is seldom used. 
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