1. Discrete-Time Signals and Systems. Summary

1.1. Discrete-Time Signals and Systems. Basic Definitions

1.1.1. Discrete and Digital Signals

1.1.1.1. Basic Definitions

Signals may be classified into four categories depending on the characteristics of **the time-variable** and **values** they take:

Signals	Time	Descriptions	Notes
Continuous-time (analogue)	Defined for every value of time	Functions of a continuous variable $f(t)$	They take on values in the continuous interval (a,b) ,
(8)			$a,b \rightarrow \infty$
Discrete-time	Defined only at discrete values of time	Sequences of real or complex numbers, $f(nT) = f(n)$	They take on values in the continuous interval (a,b) , $a,b\rightarrow\infty$ Sampling process Sampling interval, period: T Sampling rate: samples per second Sampling frequency (Hz): $f_S = 1/T$

Signals	Value	Descriptions	Notes
Continuous-valued	They can take all		Defined for every value of time or
	possible values on	variable or sequences of	Only at discrete values of time
	finite or infinite range	numbers	
Discrete-valued	They can take on		Defined for every value of time or
	values from a finite set	variable or sequences of	only at discrete values of time
	of possible values	numbers	

Digital filter theory:

Signals	Definition and description	Notes
Discrete-time	Defined only at discrete values of time and they can	Sampling process
	take all possible values on finite or infinite range.	
	Sequences of real or complex numbers.	
Digital	Discrete-time and discrete-valued signals (i.e. discrete -	Sampling, quantizing and coding process
	time signals taking on values from a finite set of	i.e. analogue-to-digital conversion
	possible values)	

1.1.1.2. Discrete-Time Signal Representations

A. Functional representations:

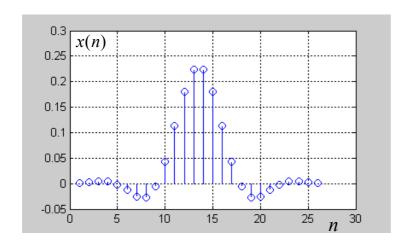
$$x(n) = \begin{cases} 1 & for \quad n = 1, 3 \\ 6 & for \quad n = 2 \\ 0 & elsewhere \end{cases}$$

B. Tabular representation:

C. Sequence representation:

$$x(n) = \{ \dots \ 0 \ 1.3 \ 2.8 \ -1.0 \ -0.4 \ \dots \}$$

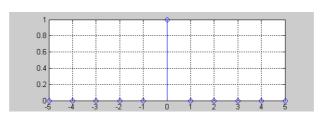
D. Graphical representation:



1.1.1.3. Some Elementary Discrete-Time Signals

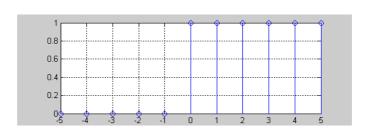
A. Unit sample sequence (unit sample, unit impulse, unit impulse signal)

$$\delta(n) = \begin{cases} 1 & for \quad n = 0 \\ 0 & for \quad n \neq 0 \end{cases}$$



B. Unit step signal (unit step, Heavisede step sequence)

$$u(n) = \begin{cases} 1 & for & n \ge 0 \\ 0 & for & n < 0 \end{cases}$$



C. Complex-valued exponential signal (complex sinusoidal sequence, complex phasor, complex-valued function)

$$x(n) = e^{j\omega t}$$
 where $\omega, t \notin R$ and $j = \sqrt{-1}$ (imaginary unit) $|x(n)| = 1$ and $\arg[x(n)] = \omega t$

1.1.2. Discrete-Time System. Definition

A discrete-time system is a device or algorithm that operates on a discrete signal called the input or excitation, according to some rule to produce another discrete-time signal called the output or response.

We say that the input signal x(t) is transformed by the system into a signal y(t) and express the general relationship between x(t) and y(t) as

$$y(n) \equiv H[x(n)]$$

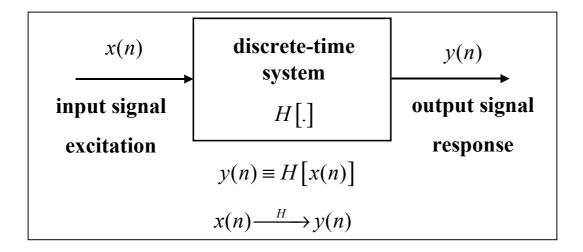
where the symbol denotes the transformation H[.] (also called operator or mapping) or processing performed by the system on x(n) to produce v(n).

The input-output description of a discrete-time system consists of a mathematical expressions or rules, which explicitly done the relations between the input and output signals (so-called *input-output relationships*). The system can be assumed to be a "black box" to the user.

Input-output relationship description:

$$y(n) \equiv H[x(n)]$$

$$x(n) \xrightarrow{H} y(n)$$



1.1.3. Classification of Discrete-Time Systems

1.1.3.1. Static vs. Dynamic Systems. Definition

A discrete-time system is called *static* or *memoryless* if its output at any instant n depends at most on the input sample at the same time, but not past or future samples of the input. In the other case, the system is said to be *dynamic* or to have *memory*.

If the output of a system at time n is completely determined by the input samples in the interval from n-N to n ($N \ge 0$), the system is said to have memory of duration N.

If N = 0, the system is *static* or *memoryless*.

If $0 < N < \infty$, the system is said to have *finite memory*.

If $N \to \infty$, the system is said to have infinite memory.

Examples:

The static (memoryless) system: $y(n) = nx(n) + bx^{3}(n)$

The dynamic system with finite memory:

$$y(n) = nx(n) + bx^{3}(n-1)$$
 $y(n) = \sum_{k=0}^{N} h(k)x(n-k)$

The dynamic system with infinite memory:

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$

1.1.3.2. Time-Invariant vs. Time-Variable Systems. Definition

A discrete-time system is called *time-invariant* if its input-output characteristics do not change with time. In the other case, the system is called *time-variant*.

Definition. A relaxed system H[.] is *time-invariant* or *shift-invariant* if only if $x(n) \xrightarrow{H} y(n)$ implies that $x(n-k) \xrightarrow{H} y(n-k)$ for every input signal x(n) and every time shift k.

Examples:

The time-invariant system:

$$y(n) = x(n) + bx^{3}(n)$$
 $y(n) = \sum_{k=0}^{N} h(k)x(n-k)$

The time-variant system:

$$y(n) = nx(n) + bx^{3}(n-1)$$
 $y(n) = \sum_{k=0}^{N} h^{N-n}(k)x(n-k)$

1.1.3.3. Linear vs. Non-linear Systems. Definition

A discrete-time system is called *linear* if it satisfies the *linear superposition principle*. In the other case, the system is called *non-linear*.

Definition. A relaxed system H[.] is *linear* if only if

$$H[a_1x_1(n) + a_2x_2(n)] = a_1H[x_1(n)] + a_2H[x_2(n)]$$

for any arbitrary input sequences $x_1(n)$ and $x_2(n)$, and any arbitrary constants a_1 and a_2 .

The multiplicative (scaling) property of a linear system:

$$H[a_1x_1(n)] = a_1H[x_1(n)]$$

The additivity property of a linear system:

$$H[x_1(n) + x_2(n)] = H[x_1(n)] + H[x_2(n)]$$

Examples:

The linear system:

$$y(n) = \sum_{k=0}^{N} h(k)x(n-k) \quad y(n) = x(n^2) + bx(n-k)$$

The non-linear system:

$$y(n) = nx(n) + bx^{3}(n-1)$$
 $y(n) = \sum_{k=0}^{N} h(k)x(n-k)x(n-k+1)$

1.1.3.4. Causal vs. Noncausal Systems. Definition

Definition. A system is said to be *causal* if the output of the system at any time n (i.e., y(n)) depends only on present and past inputs (i.e., x(n), x(n-1), x(n-2), ...). In mathematical terms, the output of a causal system satisfies an equation of the form

$$y(n) = F[x(n), x(n-1), x(n-2), \cdots]$$

where is F[.] some arbitrary function.

If a system does not satisfy this definition, it is called noncausal.

Examples:

The causal system:

$$y(n) = \sum_{k=0}^{N} h(k)x(n-k)$$
 $y(n) = x(n^2) + bx(n-k)$

The noncausal system:

$$y(n) = nx(n+1) + bx^{3}(n-1)$$
 $y(n) = \sum_{k=-10}^{10} h(k)x(n-k)$

1.1.3.5. Stable vs. Unstable of Systems. Definition

Definition. An arbitrary relaxed system is said to be bounded input - bounded output (BIBO) stable if and only if every bounded input produces the bounded output. It means, that there exist some finite numbers say M_χ and M_V , such that

$$|x(n)| \le M_x \le \infty, \implies |y(n)| \le M_y \le \infty$$

for all n . If some bounded input sequence x(n), the output is unbounded (infinite); the system is classified as unstable.

Examples:

The stable system:

$$y(n) = \sum_{k=0}^{N} h(k)x(n-k) \quad y(n) = x(n^2) + 3x(n-k)$$

The noncausal system: $y(n) = 3^n x^3 (n-1)$

1.1.3.6. Recursive vs. Nonrecursive Systems. Definitions

A system whose output y(n) at time n depends on any number of the past outputs values y(n-1), y(n-2)... is called a recursive system. Then, the output of a causal recursive system can be expressed in general as

$$y(n) = F[y(n-1), y(n-2), ..., y(n-N), x(n), x(n-1), ..., x(n-M)]$$

In contrast, if y(n) at time n depends only on the present and past inputs, then

$$y(n) = F[x(n), x(n-1), \dots, x(n-M)]$$

Such a system is called nonrecursive.

1.2. Linear-Discrete Time-Invariant System (LTI)

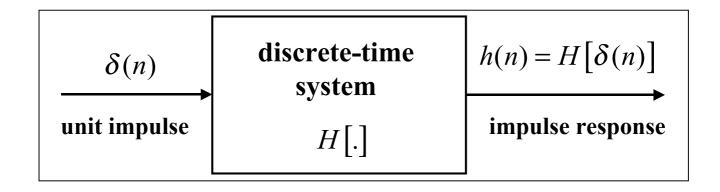
1.2.1. Time-Domain Representation

1.2.1.1 Impulse Response and Convolution, Convolution Sum

Unit impulse: $\delta(n)$

LTI: H[.]

(Unit) impulse response: $h(n) = H[\delta(n)]$



LTI description by convolution (convolution sum):

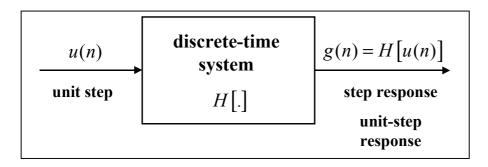
$$y(n) = \sum_{k = -\infty}^{\infty} h(k)x(n - k) = \sum_{k = -\infty}^{\infty} x(k)h(n - k) = h(n) * x(n) = x(n) * h(n)$$

Viewed mathematically, the convolution operation satisfies the commutative law.

1.2.1.2. Step Response

Unit step: u(n) LTI: H[.]

Step response (unit-step response): g(n) = H[u(n)]



$$s(n) = \sum_{k=-\infty}^{\infty} h(k)u(n-k) = \sum_{k=-\infty}^{n} h(k)$$

This expression relates the impulse response to the step response of the system.

Note:

$$s(n) = \sum_{k = -\infty}^{n} h(k) = h(n) + \sum_{k = -\infty}^{n-1} h(k) = h(n) + s(n-1)$$

$$h(n) = s(n) - s(n-1)$$

$$y(n) = \sum_{k=-\infty}^{n-1} x(k) [s(n-k) - s(n-k-1)]$$

1.2.2. Classification of LTI System

1.2.2.1. Causal LTI Systems

A relaxed LTI system is causal if and only if its impulse response is zero for negative values of n, i.e.

$$h(n) = 0$$
 for $n < 0$

Then for the causal LTI systems is valid:

$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k) = \sum_{k=-\infty}^{n} x(k)h(n-k)$$

1.2.2.2. Stable LTI Systems

A LTI is stable if its impulse response is absolutely summable, i.e.

$$\sum_{k=-\infty}^{\infty} \left| h(k) \right|^2 < \infty$$

1.2.2.3. Finite Impulse Response (FIR) LDTS and Infinite Impulse Response (IIR) LDTS

(Causal) FIR LTI systems:
$$y(n) = \sum_{k=0}^{N} h(k)x(n-k)$$

(IIR) LTI systems:
$$y(n) = \sum_{k=0}^{\infty} h(k)x(n-k)$$

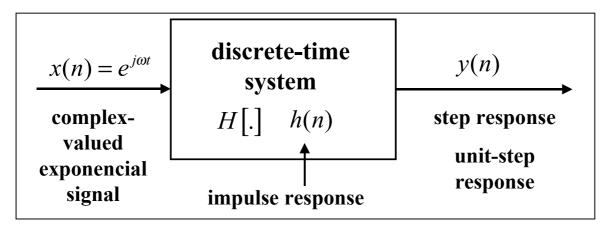
1.2.2.4. Recursive and Nonrecursive LTI Systems

Causal nonrecursive LTI:
$$y(n) = \sum_{k=0}^{N} h(k)x(n-k)$$

Causal recursive LTI:
$$y(n) = \sum_{k=0}^{N} b(k)x(n-k) - \sum_{k=1}^{M} a(k)x(n-k)$$

LTI systems characterized by Constant-Coefficient Difference Equations

1.3. Frequency-Domain Representation of Discrete Signals and LDTS



LTI system:
$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

The impulse response: h(n)

Complex-valued exponential signal: $x(n) = e^{j\omega t}$ where $\omega, t \notin R$ and $j = \sqrt{-1}$ (imaginary unit)

LTI system output:

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = \sum_{k=-\infty}^{\infty} h(k)e^{j\omega(n-k)} = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}e^{j\omega n} = e^{j\omega n}\sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$

$$y(n) = e^{j\omega n} H(e^{j\omega})$$

Frequency response:
$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$

$$H(e^{j\omega}) = \left| H(e^{j\omega}) \right| e^{j\phi(\omega)}$$

$$H(e^{j\omega}) = \text{Re}\Big[H(e^{j\omega})\Big] + j\,\text{Im}\Big[H(e^{j\omega})\Big]$$

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k) \cos \omega \, k - j \sum_{k=-\infty}^{\infty} h(k) \sin \omega \, k$$

The real component of
$$H(e^{j\omega})$$
: $\text{Re}[H(e^{j\omega})] = \sum_{k=-\infty}^{\infty} h(k) \cos \omega k$

The imaginary component of
$$H(e^{j\omega})$$
: $\operatorname{Im} \Big[H(e^{j\omega}) \Big] = -j \sum_{k=-\infty}^{\infty} h(k) \sin \omega k$

Magnitude response:
$$\left|H(e^{j\omega})\right| = \sqrt{\text{Re}\left[H(e^{j\omega})\right]^2 + \text{Im}\left[H(e^{j\omega})\right]^2}$$

Phase response:
$$\phi(\omega) = \arg \left[H(e^{j\omega}) \right] = \arctan \left[\frac{\operatorname{Im} \left[H(e^{j\omega}) \right]}{\operatorname{Re} \left[H(e^{j\omega}) \right]} \right]$$

Group delay function:
$$\tau(\omega) = -\frac{d\phi(\omega)}{d\omega}$$

1.3.1. Comments on Relationship Between the Impulse Response and Frequency Response

An important property of

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$

is that this function is periodic with period 2π ($H(e^{j\omega}) = H(e^{j[\omega+2k\pi]})$). In fact, we may view the previous expression as the exponential Fourier series expansion for $H(e^{j\omega})$, with h(k) as the Fourier series coefficients. Consequently, the unit impulse response h(k) is related to $H(e^{j\omega})$ through the integral expression

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

1.3.2. Comments on Symmetry Properties

For LTI systems with real-valued impulse response, the magnitude response, phase responses, the real component of and the imaginary component of $H(e^{j\omega})$ possess these symmetry properties:

The real component of $H(e^{j\omega})$: $\operatorname{Re}[H(e^{-j\omega})] = \operatorname{Re}[H(e^{j\omega})]$ (even function of ω periodic with period 2π)

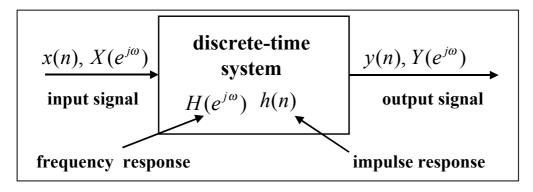
The imaginary component of $H(e^{j\omega})$: $\mathrm{Im} \Big[H(e^{-j\omega}) \Big] = -\mathrm{Im} \Big[H(e^{j\omega}) \Big]$ (odd function of ω periodic with period 2π

The magnitude response of $H(e^{j\omega})$: $\left|H(e^{-j\omega})\right| = \left|H(e^{j\omega})\right|$ (even function of ω periodic with period 2π) The phase response of $H(e^{j\omega})$: $\arg \left[H(e^{-j\omega})\right] = -\arg \left[H(e^{-j\omega})\right]$ (odd function of ω periodic with period 2π)

Consequence:

If we known $|H(e^{j\omega})|$ and $\phi(\omega)$ for $0 \le \omega \le \pi$, we can describe these functions (i.e. also $H(e^{j\omega})$) for all values of ω .

1.3.3. Comments on Fourier Transform of Discrete Signals and Frequency-Domain Description of LTI Systems



The input signal
$$x(n)$$
: $X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x(k)e^{-j\omega k}$, $x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$

The output signal
$$y(n)$$
: $Y(e^{j\omega}) = \sum_{k=-\infty}^{\infty} y(k)e^{-j\omega k}$, $y(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} Y(e^{j\omega})e^{j\omega n} d\omega$

The impulse response
$$h(n)$$
: $H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$, $h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$

Frequency-Domain Description of LTI System: $Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$

1.3.4. Comments on Normalized Frequency

It is often desirable to express the frequency response of a sequence h(n) = h(nT) in terms of units of frequency that involve sampling interval T. In this case, the expression

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k} , h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

are modified to the form:

$$H(e^{j\omega T}) = \sum_{k=-\infty}^{\infty} h(kT)e^{-j\omega kT}, \ h(nT) = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} H(e^{j\omega T})e^{j\omega nT} d\omega$$

 $H(e^{j\omega T})$ is periodic with period $2\pi/T = 2\pi F$, where F is sampling frequency.

Solution: normalized frequency approach: $F/2 \rightarrow \pi$.

Example:

$$F = 100 \, kHz$$
, $F / 2 = 50 \, kHz$, $50 \, kHz \rightarrow \pi$
 $f_1 = 20 \, kHz$, $\omega_1 = \frac{20\pi}{50} = \frac{2\pi}{5} = 0.4 \, \pi$
 $f_2 = 25 \, kHz$, $\omega_2 = \frac{25\pi}{50} = \frac{\pi}{2} = 0.5 \, \pi$

Example:

