LINEAR-PHASE FIR DIGITAL FILTER DESIGN BY FREQUENCY-SAMPLING METHODS. EXAMPLES

Exercises 4-a.

1. Summary of Important Expressions

Table 1. The four cases of linear phase FIR filters. The real-valued frequency responses. Summary.

M: even /odd	Symmetry of impulse response	$H_r(\omega) \in R$
Even	Symmetrical	$H_r(\omega) = 2\sum_{k=0}^{\frac{M}{2}-1} h(k) \cos \omega \left(\frac{M-1}{2}-k\right)$
Odd	Symmetrical	$H_r(\omega) = h\left(\frac{M-1}{2}\right) + 2\sum_{k=0}^{\frac{M-3}{2}} h(k)\cos\omega\left(\frac{M-1}{2} - k\right)$
Even	Antisymmetrical	$H_r(\omega) = 2\sum_{k=0}^{\frac{M}{2}-1} h(k) \sin \omega \left(\frac{M-1}{2}-k\right)$
Odd	Antisymmetrical	$H_r(\omega) = 2\sum_{k=0}^{\frac{M-3}{2}} h(k)\sin\omega\left(\frac{M-1}{2} - k\right)$

Table 2. Summary on the Uniform Frequency-Sampling Method 3.

Unit Sample Response: Symmetric $\alpha = 0$

$$H(k) = G(k)e^{j\pi k/M}, \ k = 0, 1, ..., M - 1$$

$$G(k) = (-1)^{k} H_{r}\left(\frac{2\pi k}{M}\right)$$

$$G(k) = -G(M - k)$$

$$h(n) = \frac{1}{M} \left\{ G(0) + 2\sum_{k=1}^{U} G(k) \cos\frac{\pi k}{M} (2n+1) \right\}$$

$$U = \frac{M-1}{2} \ for \ M \ odd \qquad U = \frac{M}{2} - 1 \ for \ M \ even$$

Unit Sample Response: Symmetric $\alpha = \frac{1}{2}$

$$H\left(k + \frac{1}{2}\right) = G\left(k + \frac{1}{2}\right)e^{-j\pi/2}e^{j\pi(2k+1)/2M}$$
$$G\left(k + \frac{1}{2}\right) = (-1)^{k}H_{r}\left[\frac{2\pi}{M}\left(k + \frac{1}{2}\right)\right]$$
$$G\left(k + \frac{1}{2}\right) = G\left(M - k - \frac{1}{2}\right)$$
$$h(n) = \frac{2}{M}\sum_{k=0}^{U}G\left(k + \frac{1}{2}\right)\sin\frac{2\pi}{M}\left(k + \frac{1}{2}\right)\left(n + \frac{1}{2}\right)$$

Unit Sample Response: Antisymmetric $\alpha = 0$

$$H(k) = G(k)e^{j\pi/2}e^{j\pi k/M}, \ k = 0, 1, ..., M - 1$$

$$G(k) = (-1)^{k} H_{r}\left(\frac{2\pi k}{M}\right)$$

$$G(k) = G(M - k)$$

$$h(n) = -\frac{2}{M}\sum_{k=1}^{(M-1)/2} G(k)\sin\frac{\pi k}{M}(2n+1) \ for \ M \ odd$$

$$h(n) = \frac{1}{M}\left\{(-1)^{n+1} G(M/2) - 2\sum_{k=1}^{(M/2)-1} G(k)\sin\frac{\pi k}{M}(2n+1)\right\} \ for \ M \ even$$

Unit Sample Response: Antisymmetric $\alpha = \frac{1}{2}$

$$H\left(k+\frac{1}{2}\right) = G\left(k+\frac{1}{2}\right)e^{j\pi(2k+1)/2M}$$

$$G\left(k+\frac{1}{2}\right) = (-1)^{k} H_{r}\left[\frac{2\pi}{M}\left(k+\frac{1}{2}\right)\right]$$

$$G\left(k+\frac{1}{2}\right) = -G\left(M-k-\frac{1}{2}\right); \quad G\left(\frac{M}{2}\right) = 0 \text{ for odd}$$

$$h(n) = \frac{2}{M}\sum_{k=0}^{V} G\left(k+\frac{1}{2}\right)\cos\frac{2\pi}{M}\left(k+\frac{1}{2}\right)\left(n+\frac{1}{2}\right)$$

$$V = \frac{M-1}{2} \text{ for } M \text{ odd} \qquad V = \frac{M}{2}-1 \text{ for } M \text{ even}$$

$$\begin{aligned} H(z) &= H_1(z)H_2(z) \\ H_1(z) &= \frac{1-z^{-M}}{M} \\ H_2(z) &= \frac{H(0)}{1-z^{-1}} + \sum_{k=1}^{\frac{M-1}{2}} \frac{A(k) - B(k)z^{-1}}{1-2\cos(2\pi k/M)z^{-1} + z^{-2}} \quad for \ M \ odd \\ H_2(z) &= \frac{H(0)}{1-z^{-1}} + \frac{H(M/2)}{1+z^{-1}} + \sum_{k=1}^{\frac{M}{2}-1} \frac{A(k) - B(k)z^{-1}}{1-2\cos(2\pi k/M)z^{-1} + z^{-2}} \quad for \ M \ even \\ A(k) &= H(k) + H(M-k) = H(k) + \overline{H(k)} = 2 \operatorname{Re}[H(h)] \in R \\ B(k) &= H(k)e^{-j2\pi k/M} + H(M-k)e^{j2\pi k/M} = 2|H(k)|\cos(\phi_k - 2\pi k/M) \in R \end{aligned}$$

2. Examples

Example 1

Determine the unit sample response h(n) and the frequency response of a linear phase FIR filter of length M=4 for which the frequency response at $\omega = 0$ and $\omega = \pi/2$ is specified as

$$H_r(0) = 1 \quad H_r\left(\frac{\pi}{2}\right) = \frac{1}{2}$$

For the design, the non-uniform frequency-sampling method has to be applied.

Example 2

Determine the coefficients h(n) of a linear phase FIR filter of length M=16 frequency response of which satisfies the condition:

$$H_r\left(\frac{2\pi k}{16}\right) = \begin{cases} 1 & k = 0,1, \\ 0 & k = 2,3,4,5,6,7,8 \end{cases}$$

For the design, the uniform frequency-sampling method known as non-recursive FIR filter design by direct computation of unit sample response has to be applied.

Example 3

Determine the transfer function H(z) of a linear phase FIR filter of length M=16 frequency response of which satisfies the condition:

$$H_r\left(\frac{2\pi k}{16}\right) = \begin{cases} 1 & k = 0,1, \\ 0 & k = 2,3,4,5,6,7,8 \end{cases}$$

For the design, the uniform frequency-sampling method based on recursive FIR filter design has to be applied.

LINEAR-PHASE FIR DIGITAL FILTER DESIGN BY WINDOWS METHOD. EXAMPLES

Exercise 4-b.

Summary of Important Expressions

Table 1. FIR Linear Time - Invariant System Description: A Review of Basic Expressions

1.	Time – domain description	$y(n) = \sum_{k=0}^{M-1} h(k) x(n-k)$
2.	Frequency – domain description	$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k} = \sum_{k=0}^{M-1} h(k)e^{-j\omega k}$
3.	Impulse response	$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$

Table 2. Some Commonly Used Windows for FIR Filter Design

	Window Type	Window Functions, $w(n)$, $-M \le n \le M$, $M = \frac{N-1}{2}$, $ w(n) = 0$ for $n > M$
1.	Rectangular	w(n) = 1
2.	Bartlett	$w(n) = 1 - \frac{ n }{M+1}$
3.	Hann	$w(n) = \frac{1}{2} \left[1 + \cos \frac{2\pi n}{2M + 1} \right]$
4.	Hamming	$w(n) = 0.54 + 0.46 \cos \frac{2\pi n}{2M + 1}$
5.	Blackmann	$w(n) = 0.42 + 0.5\cos\frac{2\pi n}{2M+1} + 0.08\cos\frac{4\pi n}{2M+1}$
6.	Kaiser (adjustable window) parameter: α	$w(n) = \frac{I_0\left(\alpha\sqrt{1-\left(\frac{n}{M}\right)^2}\right)}{I_0(\alpha)} \qquad I_0(x) = 1 + \sum_{r=1}^{\infty} \left(\frac{(x/2)^r}{r!}\right)^2$

Comments on Kaiser Window: $I_0(x)$ is the modified zero-th-order Bessel function of the first kind. For most practical applications, about 20 terms in the above summation are sufficient to arrive at reasonably accurate values of w(n).

	System	Frequency Response
1.	Differentiator	$H\left(e^{j\omega} ight)=rac{j\omega}{T}, -\pi\leq\omega\leq\pi.$
2.	Hilbert Transformer	$H(j\omega) = \begin{cases} -j & \omega > 0 \\ 0 & \omega = 0 , -\pi \le \omega \le \pi \\ j & \omega < 0 \end{cases}$

Table 3. Frequency Responses of Some Linear Time-Invariant Systems

Example 1.

Design a band-pass filter with pass-band cut off frequencies $f_1 = 20 kHz$ and $f_2 = 40 kHz$ of the order N = 11. Frequency sampling is $f_S = 160 kHz$. It is desired to apply rectangular and Bartlett window at the design.

Example 2.

By the impulse response truncation method (by the windowing method at rectangular window application) design a Hilbert transformer of the order N = 11.

Example 3.

By the windowing method at Hann window application design a differentiator of the order N = 11.

Example 4.

Design a stop-band filter with pass-band cut off frequencies $f_1 = 20 kHz$ and $f_2 = 40 kHz$ of the order N = 11. Frequency sampling is $f_S = 160 kHz$. It is desired to apply rectangular and Bartlett window at the design.