LINEAR-PHASE FIR DIGITAL FILTER DESIGN BY WINDOWS METHOD. EXAMPLES

Exercise 3.

1. Summary of Important Expressions

Table 1. FIR Linear Time - Invariant System Description: A Review of Basic Expressions

1.	Time – domain description	$y(n) = \sum_{k=0}^{M-1} h(k) x(n-k)$
2.	Frequency – domain description	$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k} = \sum_{k=0}^{M-1} h(k)e^{-j\omega k}$
3.	Impulse response	$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$

Table 1.2. Some Commonly Used Windows for FIR Filter Design

	Window Type	Window Functions, $w(n)$, $-M \le n \le M$, $M = \frac{N-1}{2}$, $ w(n) = 0$ for $n > M$
1.	Rectangular	w(n) = 1
2.	Bartlett	$w(n) = 1 - \frac{ n }{M+1}$
3.	Hann	$w(n) = \frac{1}{2} \left[1 + \cos \frac{2\pi n}{2M + 1} \right]$
4.	Hamming	$w(n) = 0.54 + 0.46\cos\frac{2\pi n}{2M + 1}$
5.	Blackmann	$w(n) = 0.42 + 0.5\cos\frac{2\pi n}{2M+1} + 0.08\cos\frac{4\pi n}{2M+1}$
6.	Kaiser (adjustable window) parameter: α	$w(n) = \frac{I_0 \left(\alpha \sqrt{1 - \left(\frac{n}{M}\right)^2}\right)}{I_0(\alpha)} \qquad I_0(x) = 1 + \sum_{r=1}^{\infty} \left(\frac{(x/2)^r}{r!}\right)^2$

Comments on Kaiser Window: $I_0(x)$ is the modified zero-th-order Bessel function of the first kind. For most practical applications, about 20 terms in the above summation are sufficient to arrive at reasonably accurate values of w(n).

	System	Frequency Response
1.	Differentiator	$H\left(e^{j\omega} ight)=rac{j\omega}{T}, -\pi\leq\omega\leq\pi.$
2.	Hilbert Transformer	$H(j\omega) = \begin{cases} -j & \omega > 0 \\ 0 & \omega = 0 \\ j & \omega < 0 \end{cases}, -\pi \le \omega \le \pi$

Table 1.3. Frequency Responses of Some Linear Time-Invariant Systems

Example 1.1.

Design a band-pass filter with pass-band cut off frequencies $f_1 = 20 kHz$ and $f_2 = 40 kHz$ of the order N = 11. Frequency sampling is $f_S = 160 kHz$. It is desired to apply rectangular and Bartlett window at the design.

Example 1.2.

By the impulse response truncation method (by the windowing method at rectangular window application) design a Hilbert transformer of the order N = 11.

Example 1.3.

By the windowing method at Hann window application design a differentiator of the order N = 11.

Example 1.4.

Design a stop-band filter with pass-band cut off frequencies $f_1 = 20 kHz$ and $f_2 = 40 kHz$ of the order N = 11. Frequency sampling is $f_S = 160 kHz$. It is desired to apply rectangular and Bartlett window at the design.