Week

Exercises

1. **1. Digital Filters. Subject Review.**

1.1. History, motivation, experiences, intentions and aims. General rules: lectures, exercises, projects, credits, and examination. A review of lectures. A review of exercises. References.

2. **2. MATLAB: A Tool for Digital Filter Design and Simulation**

2.1. Signal Processing Toolbox. Basic functions for analysis, description and simulation of digital filters.

3. Linear-Phase FIR Digital Filter Design by Windows (Windowing) Method.

3.1. Linear-phase FIR digital filter design by windows (windowing) method. MATLAB based approach.

3. 3.2. Linear-phase FIR digital filter design by windows (windowing) method. Solution of examples.

4. 4. Linear-Phase FIR Digital Filter Design by Frequency-Sampling Methods Method.

4.1. Linear-phase FIR digital filter design by non-uniform frequency-sampling. Solution of examples.

4.2. Linear-phase FIR digital filter design by uniform frequency-sampling method. Solution of examples.

4.3. Individual work on student's projects.

5. *4.4. Linear-phase FIR digital filter design by non-uniform frequency-sampling. MATLAB based approach.*

4.5. Linear-phase FIR digital filter design by uniform frequency-sampling method. MATLAB based approach.

4.6. Design of equiripple linear-phase FIR digital filter. MATLAB based approach.

4.7. Individual work on student's projects.

6. 5. IIR Digital Filter Design. Bilinear Transformation Method.

- 5.1. IIR digital filter design. Bilinear transformation method. Solution of examples.
- 5.2. Individual work on student's projects.
- 7. 5.3. IIR Digital Filter Design. Bilinear Transformation Method. MATLAB based Approach. 5.4. Individual work on student's projects.

8. 6. Digital Filter Realization

6.1. Transformations from direct form of IIR to parallel and cascade realizations of IIR filters Tools: MATLAB, specialized software.

6.2. Individual work on student's projects.
6.3. Testing of overlap-add convolution Tool: MATLAB.
6.4. Transformations from direct form of IIR to some robust digital filter structures Tool: MATLAB.
6.5. Individual work on student's projects.

10. **7. Digital Filter Implementation**

7.1. Description and demonstration of DSP based hardware (target hardware for student's projects)

Tools: 2181 EZKIT LITE from Analog Devices (16-bit fixed-point DSP), DSP56002 from Motorola (24-bit fixed-point DSP).

7.2. Demonstration of CPLD based FIR filter hardware

Tool: ALTERA based custom board, MAX+PLUS II development tool from Altera. *7.3. Individual work on student's projects.*

- 7.4 Fixed-point scaling in cascade realizations of IIR filters Tools: MATLAB, specialized software, DSP target hardware.
 7.5. Individual work on student's projects.
- 12. 8. Project Defense. Credits.