
Rev. 0.1 6/07 Copyright © 2007 by Silicon Laboratories AN324

AN324

ADVANCED ENCRYPTION STANDARD

RELEVANT DEVICES
All Silicon Labs MCUs.

1. Introduction

The Advanced Encryption Standard (AES) is an algorithm used to encrypt and decrypt data for the purposes of
protecting the data when it is transmitted electronically. The AES algorithm allows for the use of cipher keys that
are 128, 192, or 256 bits long to protect data in 16-byte blocks.

AES is a U.S. Federal Information Processing Standards approved algorithm that is also approved for commercial
and private applications. Since its acceptance in 2001, AES has become widely used in a variety of applications.

The AES algorithm is a reduced version of the Rijndael algorithm, though the names are sometimes used
interchangeably. The Rijndael algorithm allows for additional key sizes and data sizes that are not supported by
AES.

The purpose of this application note is to provide a sample implementation of the AES algorithm for Silicon Labs
microcontrollers and to detail the performance of the implementation. The provided example code is intended for
C8051F326/7 devices, but, since the code is not hardware-specific, it can easily be ported to any Silicon Labs
microcontroller.

This application note does not describe the mathematics used in the algorithm. An explanation of the mathematics,
along with other information about AES, is available in the official AES document provided by the National Institute
of Standards and Technology, FIPS PUB 197 (available at http://csrc.nist.gov/publications/fips/).

1.1. Potential Applications
Since the minimum key size of AES is 128-bits, it is considered to be immune to brute force attacks for the near
future. Given the strength of the cipher, implementing AES requires relatively few resources in terms of memory
and system cycles, which makes it a good choice for an encryption algorithm. Some sample applications where
AES is useful are:

 Wireless communication, such as wireless keyboards

 Point-of-sale terminals

 Surveillance applications

2. Implementation

The AES algorithm is a symmetric-key algorithm. A symmetric-key algorithm uses the same or related keys to
encrypt and decrypt the data. In the AES algorithm, the input data is 16 bytes, and the resulting encrypted data is
also 16 bytes. The encryption and decryption routines use the same private key that is 128, 192, or 256 bits. The
larger the key size used, the more difficult it is to break the algorithm and obtain the encrypted data.

The example code provided with this application note is a mostly straightforward implementation of the algorithm
provided in FIPS PUB 197. In order to maintain easy readability, the example code uses the same terminology and
function names provided in the specification. The optimizations used in this example that deviate from the example
implementation provided in the specification are described in more detail in "3.2. Optimization" on page 4.

2.1. Firmware Organization
The code is divided into three independent modules: encryption, decryption, and key expansion. The encryption
module includes the firmware necessary to convert the input data to cipher text. The decryption module converts
cipher text back to plain text or unencrypted data. The key expansion module expands the cipher key into a global
array that is used by both the encryption and decryption routines.

http://csrc.nist.gov/publications/fips/

AN324

2 Rev. 0.1

If the cipher key is known before the program is compiled, the expanded cipher key can be compiled into the
program, and the key expansion module is not required. If the cipher key is only known after the program is
compiled, the key expansion routine is required. Table 1 shows which files are common to all modules and which
files are module-specific.

2.2. How to Add AES Functionality to a Project
The first step in adding AES to a project is to determine which components of AES (encryption, decryption, and/or
key expansion) are required. Add the appropriate files from Table 1 to the project. The global declaration of the
variable, EXP_KEYS, will need to be moved to a common file if F326_AES_KeyExpansion.c is not included in the
project.

The second step is to customize two options. The first option is the cipher key length (128, 192, or 256 bits). The
cipher key length is defined in F326_AES_Parameters.h using #define CIPHER_KEY_LENGTH. The second option
is the choice of the cipher key. If the key is known before compile time, the key can be stored in the array,
CIPHER_KEY, or in F326_AES_KeyExpander.h, or the expanded key can be stored in the array, EXP_KEYS.

A cipher key can be selected by choosing any random 128, 192, or 256-bit number. Since the cipher key is not
required to have any special properties, such as being a multiple or factor of another number, all keys are equally
cryptographically strong. The final step is to call the encryption, decryption, and key expansion routines from the
main program using the following functions:

void Cipher (byte *in, byte *out);

void InvCipher (byte *in, byte *out);

void KeyExpansion ();

Cipher() and InvCipher() both accept a 16-byte array as the input and also output a 16-byte array.
KeyExpansion() uses a global array, CIPHER_KEY, as the input and outputs the expanded keys to another
global array, EXP_KEYS.

See F326_AES_Main.c for an example of how to use these functions.

2.3. Porting the Firmware to Other Silicon Labs MCUs
The firmware used to implement the encryption and key expansion routines is fully hardware-independent and
uses C code compatible with any Silicon Labs microcontroller without any changes.

The decryption module includes the SFR definition file for the target hardware. The FFMultiply() function in
F326_AES_Decrypt.c directly references a hardware register to check the carry bit after an addition. This hardware
register is defined in C8051F326.h, which is included in F326_AES_Decrypt.c. When using the decryption function
on another MCU, change the header file to the one appropriate for the target MCU.

Table 1. Firmware Organization

Module Relevant Files

Common Files F326_AES_Typedef.h
F326_AES_Parameters.h

Encryption F326_AES_Cipher.c
F326_AES_Cipher.h
F326_AES_Sbox.h

Decryption F326_AES_InvCipher.c
F326_AES_InvCipher.h

Key Expansion F326_AES_KeyExpander.c
F326_AES_KeyExpander.h
F326_AES_Sbox.h

AN324

Rev. 0.1 3

3. Algorithm Performance and Memory Requirements

The following section describes the number of system clock cycles necessary to execute the encryption,
decryption, and key expansion routines for the three cipher key sizes. It also lists the amount of RAM, external
RAM, and code space required by each module.

The system clock cycles were measured using an on-chip Timer. The firmware used to measure the system clock
cycles is included in the example project.

The system clock cycle count and memory requirements were obtained from a project built using the Keil CA-51
Compiler (Version 7.5) using the standard optimization settings.

3.1. Measurements
The cycle count values for encryption or decryption shown in Table 2 indicate the number of system clock cycles
required to encrypt or decrypt 16-bytes of data. The cycle count for key expansion indicates the number of system
clock cycles to expand the keys. This function will need to be called only once for each cipher key that is used.

The amount of time required to execute one of these routines for any system-clock frequency can easily be
calculated by using the following formula:

Table 2. System Cycle Count and Execution Times for Common System Clock Frequencies

Module Cycle Count CLK = 24 Mhz CLK = 50 Mhz CLK = 100 Mhz

128-bit

Encryption 11053 460 µs 221 µs 111 µs

Decryption 34634 1443 µs 693 µs 346 µs

Key Expansion 25491 1062 µs 510 µs 255 µs

192-bit

Encryption 12955 540 µs 259 µs 130 µs

Decryption 41590 1733 µs 832 µs 416 µs

Key Expansion 29605 1234 µs 592 µs 296 µs

256-bit

Encryption 14857 619 µs 297 µs 149 µs

Decryption 48609 2025 µs 972 µs 486 µs

Key Expansion 34158 1423 µs 683 µs 342 µs

Time(s)
Cycle Count

System Clock Frequency (Hz)
---=

AN324

4 Rev. 0.1

Table 3 lists the amount of RAM, external RAM, and code space required by each of the modules.

The memory requirement for the cipher key and expanded key are included with the key expansion numbers. The
memory requirement for the Sbox[] array is included with the encryption numbers. See “3.2. Optimization” for
more information about reducing the memory requirements of the algorithm.

3.2. Optimization
The example code provided with this application note is a modular version of the algorithm presented in the AES
specification. The encryption and decryption routines keep the same functional structure and organization. The
general differences are that some loops are unrolled for speed, and most of the data is passed through global
variables. The following sections describe specific choices made for the example code and provide alternate
implementation options.

3.2.1. Dynamic Key Expansion

The AES algorithm for both encryption and decryption is divided into multiple rounds, which is a function of the size
of the cipher key. During each of these rounds, an operation is performed using one row of the expanded keys. In
the provided example, the full set of expanded keys is stored in an array in the first page of external RAM to
optimize access. For a 128-bit cipher key, this array is 176 bytes. If the external RAM space is limited, the
expanded keys can instead be generated dynamically 16 bytes at a time. This helps save external RAM at the cost
of additional system cycles.

3.2.2. Finite Field Multiply

The AES algorithm performs its calculations using finite field mathematics, which is described in more detail in the
official specification. The finite field multiply operation is used in the MixColumns() and InvMixColumns()
functions of encryption and decryption and can be implemented in various ways. Optimizing this operation is
important because it is performed 576 times when using a 128-bit cipher key. Replacing the finite field multiply with
the xtime() function for the encryption process greatly reduces the required system clock cycles. The xtime()
function is an optimization on the finite field multiply operation, which takes advantage of the limited range of
operands when performing an encryption. Since the range of operands used in the finite field multiply during
decryption is larger, the xtime() function is not as efficient for decryption, and a different solution must be used.

The current example uses a log table and an exponentiation table to perform the finite field multiplications during
decryption at the expense of code space. The additional log table and exponentiation table, defined in
F326_AES_InvCipher.h, require an additional 512 bytes of code space.

An alternate implementation option is to perform the multiply using the algorithm provided in the specification.
This algorithm does not require additional code space for the lookup tables but requires many more system clock
cycles.

Table 3. Memory Requirements for the Modules

Module RAM (bytes) External RAM (bytes) Code Space (bytes)

Encryption 43 0 1056

Decryption 48 0 2100

Key Expansion

128-bit 13 352 825

192-bit 13 416 833

256-bit 13 480 841

AN324

Rev. 0.1 5

3.2.3. Combining Encryption and Decryption Routines

In the example code, the encryption and decryption modules are fully modular. For this reason, both modules
include some functions that are the same. If both encryption and decryption are necessary for the target
application, the following functions can be shared between the two modules to save code space:

 StateIn()
 StateOut()
 AddRoundKey()
 LoadKeys()

3.3. Test Vectors and Intermediate Results
This section includes the same example input vectors from the official specification for the input data and cipher
keys. All values are presented in hexadecimal format.

3.3.1. 128-Bit Cipher Key

Input Data : 0x00112233445566778899AABBCCDDEEFF

Cipher Key : 0x000102030405060708090A0B0C0D0E0F

Encrypted Data : 0x69C4E0D86A7B0430D8CDB78070B4C55A

3.3.2. 192-Bit Cipher Key

Input Data : 0x00112233445566778899AABBCCDDEEFF

Cipher Key : 0x000102030405060708090A0B0C0D0E0F1011121314151617

Encrypted Data : 0xDDA97CA4864CDFE06EAF70A0EC0D7191

3.3.3. 256-Bit Cipher Key

Input Data : 0x00112233445566778899AABBCCDDEEFF

Cipher Key :

0x000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F

Encrypted Data : 0x8EA2B7CA516745BFEAFC49904B496089

The proper execution of the encrypt and decrypt routines can be confirmed in the firmware by setting a breakpoint
after the InvCipher() function, which is called in F326_AES_Main.c. Add the variables, EncryptedData and
PlaintextData, to the IDE watch window and confirm that their values are the same as the ones listed above.
PlaintextData should be equivalent to Input Data.

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

	Relevant Devices
	1. Introduction
	1.1. Potential Applications

	2. Implementation
	2.1. Firmware Organization
	Table 1. Firmware Organization

	2.2. How to Add AES Functionality to a Project
	2.3. Porting the Firmware to Other Silicon Labs MCUs

	3. Algorithm Performance and Memory Requirements
	3.1. Measurements
	Table 2. System Cycle Count and Execution Times for Common System Clock Frequencies
	Table 3. Memory Requirements for the Modules

	3.2. Optimization
	3.2.1. Dynamic Key Expansion
	3.2.2. Finite Field Multiply
	3.2.3. Combining Encryption and Decryption Routines

	3.3. Test Vectors and Intermediate Results
	3.3.1. 128-Bit Cipher Key
	3.3.2. 192-Bit Cipher Key
	3.3.3. 256-Bit Cipher Key

